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Current Status of NP Searches @ LHC

By now, hundreds (thousands?) of searches for new 
physics at the LHC.

No positive signals so far, only limits. 

Are we looking in the right places?
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Our current coverage

How can we make sure we don’t miss anything? 



Model Independent Searches 
Can we search for new physics without a model in mind?



Model Independent Searches 

Yes?? A brief history of model independent searches in HEP:

• D0

• H1 (Hera)

• CDF

• CMS

• ATLAS

“General Search”

“MUSIC”

“Sleuth”

“Sleuth/Vista”

PRD 62:092004 (2000)
PRD 64:012004 (2001)
PRL 86:3712 (2001)

PLB 602:14-30 (2004)
0705.3721

0712.1311 PRD 78:012002 (2008)
0712.2534 (submitted to PRL, NEVER PUBLISHED)
0809.3781 PRD 79:011101 (2009)

1807.07447 EPJC 79:120 (2019)“Model independent 
general search”

CMS-PAS-EXO-14-016

Can we search for new physics without a model in mind?



Model independent searches

The general approach behind all of these: 

• Bin the data into exclusive final states, 

• Compare a zillion 1D histograms between data and simulation (or just look at 
high pT tails),

• Look for discrepancies. 
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TABLE I: A subset of the Vista comparison between Teva-
tron Run II data and the standard model prediction, showing
the final states with greatest discrepancies in population. Fi-
nal states are labeled in this table according to the number
and types of objects present, and are ordered according to
decreasing discrepancy between the total number of events
expected and the total number observed in the data. Only
statistical uncertainties on the standard model prediction are
shown; systematics are incorporated by allowing their values
to float in the overall fit. A total of 344 populated exclusive
final states are considered.

Final State Data SM prediction Final State Data SM prediction

3jτ+ 71 114 ± 4 e+γ 636 551 ± 11

5j 1661 1903 ± 51 e+3j 28656 27282 ± 405

2jτ+ 233 297 ± 6 b5j 131 95 ± 5

2j2τ+ 6 27 ± 4.6 j2τ+ 50 86 ± 8

be+j 2207 2015 ± 29 jτ+τ− 74 125 ± 14

3j 35436 37295 ± 524 bp/ 10 30 ± 5

e+3jp/ 1954 1752 ± 42 e+jγ 286 369 ± 21

be+2j 798 695 ± 13 e+jp/τ− 29 14 ± 2

3jp/ 811 968 ± 38 2j 96502 92437 ± 1355

e+µ+ 26 12 ± 2 be+3j 356 299 ± 8

for quickly implementing and testing modifications to the
correction model, including a quick fit for values of as-
sociated correction factors. The specific details of the
correction model are intentionally kept as simple as pos-
sible in the interest of transparency in the event of a
possible new physics claim. The details of this correction
model are motivated by individual discrepancies noted
in a global comparison of CDF high-pT data to the stan-
dard model prediction. The correction model includes
specific correction factors for the integrated luminosity
of the sample, the ratio (k-factor) of the actual cross sec-
tion for a standard model process and the usually leading
order approximation given by event generators, object
identification efficiencies, object misidentification rates,
and trigger efficiencies. A total of 44 correction factors
are used, of which over twenty are constrained by exter-
nal information. A global χ2 is formed by comparison of
CDF data to the standard model prediction, and mini-
mized as a function of these correction factors. Correc-
tions to object identification efficiencies are typically less
than 10%; fake rates are consistent with an understand-
ing of the underlying physical mechanisms responsible;
k-factors range from slightly less than unity to greater
than two for some processes with multiple jets.

A global comparison of data to standard model pre-
diction is made in 16,486 kinematic distributions in 344
populated exclusive final states. In each final state, the
number of events observed is compared with the standard
model prediction, as shown in Table I, and the Poisson
probability that the number of predicted events would
fluctuate up to or above (or down to or below) the ob-
served number of events is calculated and converted into
units of standard deviation. In each kinematic distri-
bution, the shape of the data is compared to the shape
of the standard model prediction using the Kolmogorov-
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FIG. 1: Distribution of Vista discrepancy between data and
the standard model prediction, measured in units of standard
deviation (σ), shown as the solid (green) histogram. The top
pane shows the distribution of discrepancies between the total
number of events observed and predicted in the 344 populated
final states considered. The bottom pane shows the distri-
bution of discrepancies between the observed and predicted
shapes of 16,486 kinematic distributions. In the bottom pane,
distributions in which data and the standard model predic-
tion are in agreement (large KS probability) correspond to
negative σ, and distributions in which the data and the stan-
dard model prediction are in relative disagreement (small KS
probability) correspond to large positive σ. The expected dis-
tributions are shown as the solid (black) curves. Interest is
focused on the entries in the tails of the top distribution and
the high tail of the bottom distribution.

Smirnov (KS) statistic, which is converted to a probabil-
ity and then into units of standard deviation.

Vista highlights final states and kinematic distribu-
tions where the statistical significance of any discrepancy
corresponds to a probability < 0.001 after accounting for
the appropriate number of final states or distributions
considered [13]. The algorithm itself cannot determine
whether a particular discrepancy constitutes a discovery
of new physics. Physics judgement is required to deter-

From CDF 0712.2534:
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The particle physics standard model (SM) is remark-
ably successful, but is believed to require expansion be-
yond the electroweak scale. A variety of possible exten-
sions have been proposed. Many analyses optimized for
specific signatures have been performed to search for evi-
dence of these possibilities. Limits have been set on cross
sections for postulated processes and on masses of hypo-
thetical particles, but no conclusive indication of physics
beyond the standard model has yet been seen [1].
This Letter summarizes a broad search for new physics

at the electroweak scale without focusing on any spe-
cific proposed scenario. The detailed writeup is pro-
vided in Ref. [2]. Events containing one or more par-
ticles produced at large transverse momentum collected
by the CDF experiment in Run II of the Fermilab Teva-
tron are analyzed for discrepancies relative to the stan-
dard model prediction. A model-independent approach
(Vista) considers gross features of the data, and is sen-
sitive to new large cross section physics. A quasi-model-
independent approach (Sleuth) emphasizes events with
large summed scalar transverse momentum, and is partic-
ularly sensitive to new electroweak scale physics. These
global algorithms provide a complementary approach to
searches optimized for more specific new physics scenar-
ios. Searches in a similar spirit have previously been per-
formed by the D0 Collaboration [3–5] in Tevatron Run I
and by the H1 Collaboration [6] at HERA-I.
This search for new physics is designed with the in-

tention of maximizing the chance for discovery, rather
than excluding model parameter space if no discrepancy
is found. Discrepancies between data and a complete
standard model background estimate are identified in a
global sample of high transverse momentum (high-pT )
collision events. Three statistics are employed to iden-
tify and quantify disagreement: populations of exclusive
final states defined by the objects the events contain,
shapes of kinematic distributions, and excesses on the
tail of summed scalar transverse momentum distribu-
tions. These statistics identify discrepancies worthy of
further study.
A discovery claim can be made to the extent that a

highlighted discrepancy can be demonstrated to be not
due to a statistical fluctuation, a mismodeling of the de-
tector response, or an inadequate implementation of the
standard model prediction, and must therefore be due
to some new underlying physics. Any observed discrep-
ancy is subject to scrutiny, and explanations are sought
in terms of the above points.
TheVista and Sleuth algorithms provide a means for

making the above three arguments, with a high threshold
placed on the statistical significance of a discrepancy in
order to minimize the chance of a false discovery claim.
As described later, this threshold is the requirement that
the false discovery rate is less than 0.001, after taking into
account the total number of final states, distributions, or
regions being examined.

The traditional notions of signal and control regions
are modified. Removing prejudice as to where new
physics may appear, all regions of the data are treated
as both signal and control. This analysis is not blind,
but rather seeks to identify and understand discrepan-
cies between data and the standard model prediction.
With the goal of discovery, emphasis is placed on ex-
amining discrepancies, focusing on outliers rather than
global goodness of fit. Individual discrepancies that are
not statistically significant are generally not pursued.
Vista and Sleuth are employed simultaneously,

rather than sequentially. An effect highlighted by
Sleuth prompts additional investigation of the discrep-
ancy, usually resulting in a specific hypothesis explaining
the discrepancy in terms of a detector effect or adjust-
ment to the standard model prediction that is then fed
back and tested for global consistency using Vista.
Forming hypotheses for the cause of specific discrepan-

cies, implementing those hypotheses to assess their wider
consequences, and testing global agreement after the im-
plementation are emphasized as the crucial activities for
the investigator throughout the process of data analy-
sis [11]. This process is constrained by the requirement
that all adjustments be physically motivated.
This search for new physics terminates when one of

two conditions are satisfied: either a compelling case for
new physics is made, or there remain no statistically sig-
nificant discrepancies on which a new physics case can
be made. In the former case, to quantitatively assess
the significance of the potential discovery, a full treat-
ment of systematic uncertainties must be implemented.
In the latter case, it is sufficient to demonstrate that all
observed effects are not in significant disagreement with
an appropriate global standard model description.
This analysis uses data corresponding to an integrated

luminosity of 927 pb−1 of pp̄ collisions at
√
s = 1.96 TeV

recorded by the CDF II detector [7]. CDF II consists of a
charged particle tracking system composed of silicon strip
detectors and a gas drift chamber inside a 1.4 T mag-
netic field, surrounded by electromagnetic and hadronic
calorimeters and enclosed by muon detectors.
A standard set of object identification criteria is used

to identify isolated and energetic objects produced in
the hard collision, including electrons (e±), muons (µ±),
taus (τ±), photons (γ), jets (j), jets originating from a
bottom quark (b), and missing momentum ( /p). Monte
Carlo event generators are used to determine the stan-
dard model prediction. Vista partitions data and Monte
Carlo events into exclusive final states labeled according
to the objects (e±, µ±, τ±, γ, j, b, /p) identified in each
event. Each event belongs to one and only one exclusive
final state [12].
A correction model is developed to improve systematic

deficiencies in the standard model theoretical prediction
and the simulation of the detector response. Achieving
this on the entire high-pT dataset requires a framework



Major drawbacks

The general approach behind all of these: 

• Bin the data into exclusive final states, 

• Compare a zillion 1D histograms between data and simulation (or just look at 
high pT tails),

• Look for discrepancies. 



Major drawbacks

The general approach behind all of these: 

• Bin the data into exclusive final states, 

• Compare a zillion 1D histograms between data and simulation (or just look at 
high pT tails),

• Look for discrepancies. 

Enormous look elsewhere effect



Major drawbacks

The general approach behind all of these: 

• Bin the data into exclusive final states, 

• Compare a zillion 1D histograms between data and simulation (or just look at 
high pT tails),

• Look for discrepancies. 

Enormous look elsewhere effect

Sub-optimal signal / background discrimination



Major drawbacks

The general approach behind all of these: 

• Bin the data into exclusive final states, 

• Compare a zillion 1D histograms between data and simulation (or just look at 
high pT tails),

• Look for discrepancies. 

Over-reliance on simulation for background prediction

Enormous look elsewhere effect

Sub-optimal signal / background discrimination



Bruce Knuteson  20

46% of pseudo experiments are 

expected to be as interesting 

Sleuth finds no significant excess 

in CDF Run II high-pT data

This does not prove there is no 

new physics present

Sleuth@CDFII 
result

(top 5) fraction of pseudo experiments in this 

final state as interesting as CDF data

fraction of pseudo experiments in any 

final state as interesting as CDF data

Problem  Solution  Vista  Sleuth  Surprise!  Bard  Quaero  TurboSim

CDF Run II (927 pb-1)

From B. Knuteson talk at UMich (2008)

An example of what is found



An example of what is found

From B. Knuteson talk at UMich (2008)
Bruce Knuteson  12Bruce Knuteson  
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Sample discrepant distribution (parton showering suspected)
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Look elsewhere effect

Simple way to mitigate LEE: 

• Divide data in two

• Look for discrepancies in first half

• Fix regions of interest around these discrepancies and 
restrict search to these in the second half

• An even better approach: k-fold cross validation, see e.g. 
1805.02664

I II III I II III



Sub-optimal signal/background discrimination

Can do much better than comparing 1D histograms. 

Using deep learning, can leverage the entire high-dimensional 
phase space to separate signals from background!

DeepTop minimal

Our final tagger

HTTV2+τ32 BDT
HTTV2+τ32 cut-based
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1

10

100

1000

104

105

ϵS

1/
ϵ B

CMS jets

Figure 8: ROC curves comparing our best top tagger (black), the original DeepTop tagger (red), the

cut-based top-tagger from [36] using variables from HTTV2 and ⌧32 (blue dashed), and a BDT built

out of those same variables (blue solid), for the CMS jet sample.

directly against their “MotherOfTaggers” BDT ROC curve (i.e. without recasting it).

For the CMS jet sample, we include two taggers that are representative of the state-of-

the-art in top-tagging with high-level features: a cut-based top-tagger using variables

from HTTV2 and N-subjettiness, and a BDT built out of those same variables. The BDT

is trained on the same 1.2M+1.2M jets as our final CNN tagger. The BDT improves

the performance of the high-level cut-based tagger by a moderate amount.

For the DeepTop jet sample, the baseline tagger was already comparable to the

BDT, and our improvements to the former raise it above the BDT by a factor of ⇠ 2.

Meanwhile, for the CMS jet sample, it is surprising to see that the baseline tagger is

outperformed by even a simple cut-based tagger at lower tag e�ciencies. This again

highlights the importance of optimizing a tagger for each fiducial jet selection. Thanks

to the factor of 3–10 improvement over the baseline, our final CNN top tagger still shows

substantial gains (a factor of ⇠ 3 in background rejection) compared to the BDT. One

20

From Macaluso & DS 1803.00107
top tagging with CNNs

Factor of 3-5 improved performance 
compared to cut-based methods!

See D’Agnolo & Wulzer 1806.02350: train DNN to distinguish data from bg MC. 
Optimal version of existing general searches   



Over-reliance on simulation for backgrounds

Existing approaches are largely signal model independent, but not 
background model independent.

To achieve full model independence, we would like to predict backgrounds 
directly from the data.

CWoLa Hunting
8

An Example Target

1. It is very simple (bump hunt)
2. It is very complex

(jet substructure)
3. It is easily missed

With 150/fb, exclusion on 3 TeV 

dijet resonance is 5000 events

Bump hunt with sideband fit
Figure 1: Illustration of a canonical example where the ABCD backgrond estimation method is to
be used. The black distribution is the collected data, and the red distribution is the hypothesized
shape of the signal that the analysis is targetting.

least one continuous observable available, so in this respect the use of continuous observables
for defining the ABCD regions is preferred.

The goal of the ABCD method is to produce a prediction for the number of non-signal events in
the signal region. Chapter 2 will walk through a traditional arithmetic approach to answering this
question, before we attempt in chapter 3 to cast the problem in terms of a statistical likelihood
model which we will simply fit to the data in order to estimate the background.

2 Traditional arithmetic approach

In this chapter we go through the traditional process of applying the ABCD method to the canon-
ical problem laid out in section 1.1. This will include applying the standard arithmetic ABCD
calculation to obtain a prediction, and then attempting to validate this method using a validation
region. Typical methods of defining additional systematic uncertainty to the prediction following
this validation (in the case of non-closure) as well as attempts to improve the prediction will also
be discussed.

2.1 The most basic ABCD prediction

The assumption that underpins the ABCD method is that the following statement is true:

Nbkg
C

Nbkg
D

=
Nbkg

A

Nbkg
B

(1)

This will be satisfied if the observables defining the ABCD plane are su�ciently uncorrelated for
background events. A visual inspection of figure 1 might lead us to believe that this should be
approximately true: the data distribution (which we assume is purely background events) looks
approximately uncorrelated in the two variables. Therefore proceeding with the ABCD method

3

NA = NB ⇥ NC

ND
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ABCD method
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We want to search for new physics in the data in a signal and background 
independent way. 

Cannot use simulation or ground-truth labels.  We need unsupervised ML.

Two main approaches proposed so far:

• CWoLa hunting 
Collins, Howe & Nachman 1805.02664, 1902.02634 

• Autoencoders  
Farina, Nakai & DS 1808.08992; Heimel et al 1808.08979

CWoLa Hunting
19

Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

2σ

3.8σ

4.2σ

7σ

There are surely more methods waiting to be invented!



Searching for NP with deep autoencoders
   Heimel et al 1808.08979;   Farina, Nakai & DS 1808.08992

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

An autoencoder maps an input into a “latent representation” and then 
attempts to reconstruct the original input from it.   

The encoding is lossy, so the reconstruction is not perfect. 

Latent layer

See also:  
Hajer et al “Novelty Detection Meets Collider Physics” 1807.10261  
Cerri et al “Variational Autoencoders for New Physics Mining at the Large Hadron Collider” 1811.10276

Many real world applications of autoencoders, including anomaly detection, 
fraud detection, denoising, compression, generation, density estimation
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Reconstruction Error

By training the autoencoder on a set of “normal” events, 
it learns to reconstruct them well.

Then when the autoencoder encounters 
“anomalous” events, its performance 
should be worse.

L =
1

N

NX

i=1

(xin
i � xout

i )2Loss function for autoencoder:

Can use reconstruction error 
as an anomaly threshold!

“reconstruction error”



Sample definitions

• Background: QCD jets  
(pT: 800-900 GeV, |η|<1, anti-kt R=1) 

• Signals: 

• All-hadronic tops

• 400 GeV gluinos decaying via RPV

• We formed jet images in η and ϕ 
with a pixel resolution and intensity 
given by the calorimeter towers. 

Jet Images 12

Unrolled	slice	of	detector

Calorimeter	towers	as	pixels
Energy	depositions	as	intensity

Slide	from	B.	Nachman



Autoencoder architecture
Convolutional Autoencoder

13

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-
US2-1C3

128C3 : 128 filters with

              a 3x3 kernel

MP2 : max pooling with

          a 2x2 reduction factor

32N : a fully-connected layer

         with 32 neurons

Autoencoder architecture :

US2 : up sampling with

          a 2x2 expansion factor

Encoder Latent space Decoder
M. Ke, C. Lin, Q. Huang (2017)

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-US2-1C3

Our primary autoencoder used convolutional neural networks 
(CNNs) for encoding and decoding the jet images.

We also considered autoencoders based on PCA and simple DNNs. 

Many more architectures are possible.
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(ie without optimizing on a specific signal) 

• d too large → autoencoder becomes identity transform

• d too small → autoencoder cannot learn all the features
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Figure 5: Left: Scree plot for PCA. Contribution to the variance of each principal component in
descending order. Right: average loss as a function of encoding space dimensions. Each dot corresponds
to the average of 5 independent training runs on the 100k training sample (apart from PCA, which is
deterministic and has no variance).

Figure 6: Dependence of performance of autoencoders in the weakly-supervised learning on number
of dimensions of latent space. The values of E10 and E100 for top jet signals are shown respectively in
the left and right panels. Each dot corresponds to the average of 5 independent training runs on the
100k training samples (apart from PCA, which is deterministic and has no variance).

coders presented in the paper.

Finally, let’s examine the wisdom of our choice by looking at the top signal for

example. Shown in Fig. 6 is E10 and E100 for the top signal (averaged over 5 training

runs) as a function of the latent dimension. This shows the same behavior as we saw

above – the performance of the autoencoders plateau around k = 6. This is encouraging

evidence for our unsupervised method of choosing the latent dimension based on PCA

and reconstruction loss.
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idea: look for saturation point as d is increased



Choosing the latent dimension

Should choose the latent dimension in an unsupervised manner 
(ie without optimizing on a specific signal) 

• d too large → autoencoder becomes identity transform

• d too small → autoencoder cannot learn all the features

We chose d=6
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Figure 5: Left: Scree plot for PCA. Contribution to the variance of each principal component in
descending order. Right: average loss as a function of encoding space dimensions. Each dot corresponds
to the average of 5 independent training runs on the 100k training sample (apart from PCA, which is
deterministic and has no variance).

Figure 6: Dependence of performance of autoencoders in the weakly-supervised learning on number
of dimensions of latent space. The values of E10 and E100 for top jet signals are shown respectively in
the left and right panels. Each dot corresponds to the average of 5 independent training runs on the
100k training samples (apart from PCA, which is deterministic and has no variance).
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Performance: weakly supervised mode

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

It works as an anomaly detector!

Train the AE on QCD backgrounds only. 



Performance: weakly supervised mode

Figure 3: Each panel represents the average of 100k jet images. Pixel intensity corresponds to the
total pT in each pixel. Upper row: original sample. Middle row: after reconstruction. Lower row:
pixel-wise squared error. Left column: QCD jets. Middle column: top jets. Right column: g̃ jets.

the more numerous low mass QCD jets at the expense of the rarer high mass QCD jets.

Meanwhile the CNN has learned information that is not as correlated with the mass,

e.g. details about the jet substructure.

In Table 1, we show the signal e�ciency at 90% and 99% background rejection

(which we refer to as E10 and E100 respectively). The values reported in each case are

the average over 5 independent training runs to ameliorate the intrinsic variance (apart

from PCA which is deterministic). We see that rejecting 99% of background will keep

more than 10% of the signals for both of the deep-learning-based autoencoders.

3.2 Choosing the latent dimension

Here we will explore the dependence of the autoencoder on the dimension of the latent

space. This is one of the most important choices to make in the design of an autoencoder

for anomaly detection. If the dimensionality is too low, the autoencoder is not able to

capture all the salient features of the training set. On the other hand, as the encoding

space gets larger, we get closer to the trivial representation. Hence we would like to find

8
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Fully unsupervised mode

Can also train on QCD background “contaminated” with a small 
fraction of signal.  This could be representative of actual data.
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Figure 8: The performance of autoencoders in the unsupervised learning case where the training set
is contaminated with anomalous events. We take top jet samples for anomalous events. The horizontal
axis denotes the ratio fcont of top jet samples in the whole training set with 100k samples. In the left and
right panels, the values of E10 and E100 for top jet signals are shown respectively. The gray, blue and
red curves denote the cases of the PCA, dense and convolutional autoencoders (each dot representing
the average of 5 runs).

Figure 9: ROC curves for CNN autoencoders trained on samples of QCD events contaminated with a
fraction fcont of gluino events.

Shown in fig. 9 is a similar comparison for contamination with gluinos. We see

that at fixed background rejection, the signal e�ciency decreases by 10-20% as the

contamination fraction of the training sample is increased from zero to 10%.

Just to emphasize how powerful this method potentially is, we see that with the

CNN autoencoder, even with 10% signal present in the training sample, the autoencoder

arrives at E100 ⇠ 0.1, so after this cut on reconstruction loss, we would end up with

S/B ⇠ O(1)!

Of course, without some way of estimating the background, this unsupervised method

14

(E10 = signal efficiency 
at 10% bg efficiency)

Performance of AE robust even up to 10% contamination!



Background estimation

Finally, background estimation. Remember: unlike past attempts at 
model-independent searches, we want it to be data-driven!

One idea: combine autoencoder with a bump hunt in jet mass.  
Estimate backgrounds using sidebands in mass.

Only works if cutting on reconstruction error does not sculpt the 
mass distribution of the background!

This would greatly 
underestimate the 
background in the SR

SRsideband sideband



Bump hunt with autoencoder
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Figure 10: The left figure shows the average mass in bins of increasing reconstruction error, for the
di↵erent autoencoder architectures. We see that the PCA and dense autoencoder losses are highly
correlated with jet mass all the way up to 400 GeV, while the CNN becomes uncorrelated for masses
above ⇠ 300 GeV. The right figure illustrates this with jet mass histograms for the QCD background.
We see that they are stable against increasingly hard cuts on the reconstruction error.

for jet masses above ⇠ 300 GeV.3

To illustrate the possibilities of searching for new physics in this way, by first “clean-

ing” the QCD background using the CNN autoencoder and then doing a bump hunt in

jet mass, we include Fig. 11. These are the jet mass histograms for QCD background

and 400 GeV gluinos, now normalized to the LO gluino and QCD cross sections, before

(left) and after (right) a cut on CNN autoencoder loss that removes a factor of 1000 of

the QCD background. Importantly, we have trained to autoencoder on a mixed sample

containing the expected fraction of gluino jets, corresponding to an overall contamination

fraction of 10�3. This would be representative of the actual data, if it really contained

these gluinos.

We see that the S/B achievable here in a mass window around the gluino mass is

⇡ 25%. As can be seen clearly from the histograms, this is an impressive improvement

on the S/B before the cut (i.e. just from the raw jet mass histogram), which is only

⇡ 4%. This improvement in S/B could be important in situations where S/B is small

and we are limited by systematic and not statistical errors.

We can similarly quantify the gain in statistical significance. According to the ROC

curve in fig. 4 right (again, the ROC curve for unsupervised learning with this small

amount of contamination will be very similar), the significance improvement ✏S/
p
✏B is

approximately a factor of 1.25 at this working point. At working points with higher

e�ciency, it is as much as a factor of 2 � 3. One could plausibly discover new physics

3We note that a better approach would probably be to explicitly decorrelate the autoencoder output
with jet mass, e.g. using an adversarial network. This would be interesting to explore further (in fact,
see [46]) but it is beyond the scope of this work.
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We find empirically that the background jet mass distribution is fairly 
stable against cuts on CNN AE reconstruction loss above ~250 GeV.



Bump hunt with autoencoder

Figure 10: Jet mass histograms for QCD background and 400 GeV RPV gluinos, normalized to their
LO cross sections, before (left) and after (right) a cut on CNN autoencoder loss that rejects a factor of
1000 of the QCD background.

on CNN loss that reduce the QCD background by a factor of 10 (blue), 100 (orange),

and 1000 (green). The jet mass distribution is remarkably stable as we cut harder on

CNN loss. This makes it the superior autoencoder for doing a bump hunt in jet mass

for jet masses above ⇠ 300 GeV.

To illustrate the possibilities of searching for new physics in this way, by first “clean-

ing” the QCD background using the CNN autoencoder and then doing a bump hunt in

jet mass, we include Fig. 10. These are the jet mass histograms for QCD background

and 400 GeV gluinos, now normalized to the LO gluino and QCD cross sections, before

(left) and after (right) a cut on CNN autoencoder loss that removes a factor of 1000 of

the QCD background. Importantly, we have trained to autoencoder on a mixed sample

containing the expected fraction of gluino jets, corresponding to a contamination frac-

tion of 10�3. This would be representative of the actual data, if it really contained these

gluinos. We see that the S/B achievable here is ⇡ 25%. As can be seen clearly from

the histograms, this is an impressive improvement on the S/B before the cut (i.e. just

from the raw jet mass histogram), which is only ⇡ 4%. One could plausibly discover

new physics this way!

5 Discussion

In this paper, we have shown how autoencoders – machine-learning algorithms that learn

how to compress and decompress a sample of inputs – are potentially powerful new tools

for performing open-ended searches for new physics at the LHC. While autoencoders

have many real-world applications to anomaly detection, they have up till now not been
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Before AE cut After AE cut

Train directly on data that contains 400 GeV gluinos. 
Use the AE to clean away QCD jets. 
Enhance the significance of the bump hunt! (improve S/B by factor of ~6)

Could really discover new physics this way!



Autoencoder with explicit decorrelation

A more controlled approach to mass decorrelation would be to 
explicitly penalize correlations in the training of the autoencoder.

One promising method: autoencoder with adversarial decorrelation 
(Heimel et al 1808.08979; based on 1611.01046, 1703.03507 and the idea behind 
GANs)

• Introduce a second NN, the adversary, that tries to predict the mass from 
the reconstruction loss. 

• Penalize the total loss function when the adversary does well. 

Ladv =
X

i

(fadv(LAE(xi))�mi)
2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ltot = LAE � �Ladv
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Autoencoder with explicit decorrelationSciPost Physics Submission

Figure 5: Left: jet mass distributions from the image-based autoencoder applied to QCD
jets. The di↵erent lines show the full sample up to the 5% least QCD-like jets, defined by the
autoencoder loss function. Right: the same jet mass distributions, but for the QCD-trained
adversarial autoencoder network.

In the left panel of Fig. 5 we show jet mass distributions for QCD jets in slices of the
autoencoder loss function. The per-centile ranges from all QCD jets to the 5% least QCD-like
of all QCD jets. For the full jet sample we see the expected peak at small mj ⇡ 50 GeV with
a long tail extending beyond 300 GeV. For the least QCD-like jets in the pure QCD sample
a peak at mj ⇡ 200 GeV appears. This means that the cut on the autoencoder output
badly shapes the background and makes it signal-like. This defines the task of the adversarial
network: provide a smooth jet mass distribution for QCD jets, independent of the value of the
autoencoder loss function; or in other words, de-correlate the jet mass from the autoencoder.

Again, we use Keras [35] and Tensorflow [36] with the Adam [37] optimizer for the
combined adversarial network. The image-based autoencoder part of the network is described
in Fig. 2; the adversarial part consists of eight dense layers with 800, 400, 200, 100, 50, 25, 10,
and 12 units. We now train this network on 600,000 QCD jets. The output layer corresponds
to 10 pre-defined slices in the jet mass, binned such that they are populated by the same
number of QCD jets. On each side we add overflow bins which are not populated by QCD
jets. The task of the adversary is not to extract the exact jet mass value, but to determine the
probabilities for the jet mass to fall into each bin. This statistical interpretation requires a
multi-label cross entropy as the adversary loss function [24]. All layers use the ReLU activation
function except for the last layer, where a SoftMax activation function guarantees that all 12
probabilities sum to one. When training on the combined loss function, each epoch is split
into batches of size 128. For each batch we first train the autoencoder using the combined
loss function of Eq.(8) and then train the adversary with only the adversary loss function.
The size of the Lagrangian multiplier is chosen such that the two contributions to the loss
function are of similar size, i.e. it balances the de-correlation vs the discrimination power of
the network. For instance, the jet mass distribution for � = 5 · 10�4, shown in the right panel
of Fig. 5, indicates that the background shaping is indeed largely gone.

To study the interplay of the mass de-correlation with the performance of the adversarial

9

Heimel et al 1808.08979

Current implementation needs QCD backgrounds for decorrelation. 
Can generalize to fully unsupervised case?



Alternatives to adversaries

Adversaries are notoriously tricky to train — saddle point optimization

Would be great if we could achieve the same performance but with a convex 
regularizer term

First idea: can we just use Pearson correlation coefficient?

Problem: this only measures linear correlations

min
✓clf

max
✓adv

Lclf(y(✓clf))� �Ladv(y(✓clf),m; ✓adv)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

min
✓clf

Lclf(y(✓clf)) + �Creg(y(✓clf),m)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Creg = R(y,m) /
X

i

yimi

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Pearson correlation

y and m can be highly correlated yet R=0



Distance correlation (“DisCo”)
Work in progress with Gregor Kasieczka

Promising idea: “distance correlation”  
(Szekely, Rizzo, Bakirov 2007; Szekely & Rizzo 2009)

• Zero iff X, Y are independent; positive otherwise

• Computationally tractable

• Straightforward sample definition — doesn’t require binning

There are many information-theoretic measures of similarity of distributions such as

KL-divergence, Jensen-Shannon distance, and mutual information, but these all require

knowledge of the underlying probability distribution and/or binning, so they cannot be

computed directly from the sample.

One measure that seems to fit the bill perfectly is “distance correlation”, which

originated in the works of [? ? ? ? ]. It can be computed from the sample and it has

the key property that it is zero i↵ X and Y are independent.

The definition of distance covariance is:

dCov2(X, Y ) =

Z
dpsdqt |fX,Y (s, t)� fX(s)fY (t)|2w(s, t) (1)

where X 2 Rp, Y 2 Rq, fX and fY are the characteristic functions for the random

variables X and Y , and fX,Y is the joint characteristic function for X and Y . Finally

w(s, t) / |s|�(p+1)|t|�(q+1) (2)

is a weight function that is uniquely determined up to an overall normalization by the

requirement that dCov is invariant under constant shifts and orthogonal transformations,

and equivariant under scale transformations [? ]. Since fX,Y = fXfY i↵ X and Y are

independent random variables, the definition (1) makes clear that distance covariance is

a measure of the independence of X and Y that is zero i↵ X and Y are independent.

Using the definition of the characteristic function it is straightforward to verify that

we can also express dCov as

dCov2(X, Y ) = h|X �X 0||Y � Y 0|i+ h|X �X 0|ih|Y � Y 0|i � 2h|X �X 0||Y � Y 00|i (3)

where |·| refers to the Euclidean vector norm1 and (X, Y ), (X 0, Y 0), (X 00, Y 00) are iid from

the joint distribution of (X, Y ). Using this alternative form of dCov2 it is straightforward

to compute a sampling estimate of dCov2 from a dataset of (Xi, Yi).

Finally, we normalize the distance covariance by the individual distance variances to

obtain distance correlation:

dCorr2(X, Y ) =
dCov2(X, Y )

dCov(X,X)dCov(Y, Y )
(4)

The distance correlation is bounded between 0 and 1. Normalizing prevents the NN from

shrinking the range of Y to trivially reduce the distance covariance without actually

achieving mass decorrelation.

1
In fact there is a family of distance covariance measures parameterized by 0 < ↵ < 2 where one

uses |X�X 0|↵ instead of |X�X 0|. These relax the requirement of strict equivariance under rescalings.

In this paper we will focus on ↵ = 1 but in principle this would be another hyperparameter to explore.

3



Distance correlation

Disco is sensitive to nonlinear correlations!
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the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.

 = 50%rel
sigε @ rel

bkgεBackground rejection, 1 / 
10 210

 =
 5

0%
re

l
si

g
ε

M
as

s-
de

co
rre

la
tio

n,
 1

 / 
JS

D
 @

 

1

10

210

310

410

510

Statistical limit

Analytical:

21τ
DDT
21τ

2D
NN−k

2D
2D
CSS
2D

MVA:

NNz

ANNz

Adaboostz
uBoostz

=0.01α

=0.1α

=0.3α

=1α

=1λ

=3λ

=10λ

N
o 

se
pa

ra
tio

n

Maximal sculpting

→
   

 L
es

s 
sc

ul
pt

in
g 

→     Greater separation 

ATLAS  Simulation Preliminary

 = 13 TeVs
 jet taggingW

 [200, 500] GeV∈ 
T

p

(a) Jet pT 2 [200, 500] GeV

 = 50%rel
sigε @ rel

bkgεBackground rejection, 1 / 
10 210

 =
 5

0%
re

l
si

g
ε

M
as

s-
de

co
rre

la
tio

n,
 1

 / 
JS

D
 @

 

1

10

210

310

410

510

Statistical limit

Analytical:

21τ
DDT
21τ

2D
NN−k

2D
2D
CSS
2D

MVA:

NNz

ANNz

Adaboostz
uBoostz

=0.01α

=0.1α
=0.3α

=1α

=1λ

=3λ

=10λ

N
o 

se
pa

ra
tio

n

Maximal sculpting

→
   

 L
es

s 
sc

ul
pt

in
g 

→     Greater separation 

ATLAS  Simulation Preliminary

 = 13 TeVs
 jet taggingW

 [500, 1000] GeV∈ 
T

p

(b) Jet pT 2 [500, 1000] GeV

Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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Best performer was 
adversarial NN



Work in progress with Gregor Kasieczka

Comparable performance to 
DNN+adversary.

Much easier to train.

Distance correlation (“DisCo”)



Summary/Outlook
There is increasingly strong motivation to perform model-independent searches 
at the LHC.  We need to ensure that we have not missed anything in the data. 

However, attempts at model-independent searches have suffered from major 
drawbacks: an enormous trials factor, simplistic signal/background discrimination, 
and an over-reliance on simulation. Together, they have given the philosophy of 
model-independent searches a bad name. 

In this talk we have explored new ideas for model-independent searches 
inspired by recent breakthroughs in unsupervised deep learning. 

We have seen that:

• Deep autoencoders can find subtle signals in the data in a model agnostic way. 

• Decorrelation is essential in combining data-driven background estimation with deep learning. 

• A new method “DisCo” can more easily achieve state-of-the-art decorrelation in NN training.



Outlook

I think there is an exciting future for model-independent searches @ LHC!

• Comparison of different approaches to model-independent searches (AE, CWoLa, 
… — work in progress with Pablo Martin & Ben Nachman)

• Careful study of the LEE in these different approaches 

• More applications of DisCo

• e.g. using it to improve the ABCD method (“Double DisCo” — work in progress with Gregor 
Kasieczka, Ben Nachman & Matt Schwartz)

• Real life applications of decorrelation? 

• E.g. making less discriminatory AIs for hiring/admissions/bail decisions/sentencing/… ?

• New ideas for model-independent searches 

• e.g. using recent breakthroughs in density estimation to search for anomalies

• many more…?!



Come join us for the LHC Olympics 2020!



Thanks for your attention!


