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★Abrikosov strings (1950s);



★ Nielsen-Olesen (1973);


★ ★ Cosmic strings (Kibble 1970s, Witten 1985);


★ ★ ★ Non-Abelian strings in susy Yang-Mills 
(2003):


Bulk G×G→CF locking→(Gdiag→H)→G/H coset model


on the world sheet → (susy in bulk→susy on ws);



★ ★ ★ ★ Non-Abelin strings in CM phenomena
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★ Hanany-Tong, 2003



★ ★ Auzzi et al., 2003             }  



★ ★ ★ Shifman-Yung, 2003 - ...


❖ Nitta-MS-Vinci (2013)


❖ MS-Yung (2013)


❖ Peterson-MS (2014)


❖ “Simple Models with Non-Abelian Moduli on  

Topological Defects,” MS (2012)
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Abrikosov vortices; Type II superconductivity

φ complex
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where

U(φ) = λ
(
|φ|2 − v2

)2
. (10.2)

In the vacuum |φ| = v but the phase of the field φ may rotate. Imagine a
point on the xy plane and a contour C which encircles this point (Fig. 10.1).
Imagine that, as we travel along this contour, the phase of the field φ changes
from 0 to 2π, or from 0 to 4π, and so on. In other words,

φ(r,α) → v einα at r→∞, (10.3)

where we use polar coordinates: α is the angle on the xy plane, r is the

C

Fig. 10.1. The vortex of the φ field. The arrows show the values of the complex
field φ at given points on the contour which encircles the origin (the vortex center).

radius (Fig. 74.1), and n is an integer. Such field configuration is called a

α
x

r

y

Fig. 10.2. Polar coordinates on the xy plane, r =
√

x2 + y2.

130 Vortices and Flux Tubes (Strings)

vortex. It is clear, on topological grounds, that the winding of φ cannot
be “unwind” by any continuous field deformations. Mathematically this is
expressed as follows. The vacuum manifold in the case at hand is a circle.
We map this circle onto a spatial circle depicted in Fig. (10.1). Such maps
are categorized by topologically distinct classes labeled by integers: positive,
negative or zero,

Topological
formula for the
first homotopy

group. π1(U(1)) = Z .

The integer counts how many times we wind around the vacuum manifold
circle when we sweep the spatial circle once. The map is orientable: sweep-
ing the vacuum manifold clockwise we can wind around the spatial circle
clockwise or anticlockwise.

Although such global vortices may play a role if spatial dimensions are
assumed to be finite, their energy diverges (logarithmically) in the limit of
infinite sample size. Indeed,

∂iφ∼ i nφ∂iα = −i n εij
xi

r2
at r →∞ (i, j = 1, 2) , (10.4)

which implies

E =

∫
d2x

{
∂iφ̄∂iφ+ U(φ)

} φ=veinα

−→ 2πv2n2
∫

dr

r
→∞ . (10.5)

Thus, the global vortex mass (the flux tube tension in D = 4) diverges
logarithmically both at large and small r. The small-r divergence can be
cured if we let φ→ 0 in the vicinity of the vortex center. To cure the large-r
divergence we will have to introduce a gauge field.

10.2 The Abrikosov–Nielsen–Olesen vortex (string)

A way-out allowing one to make the vortex energy finite is well-known.†
To this end one should gauge the U(1) symmetry. The Abrikosov–Nielsen–
Olesen (ANO) vortex is a soliton in the gauge theory with a charged scalar
field whose vacuum expectation value breaks U(1) spontaneously. The model
is described by the LagrangianU(1) is gauged

L = − 1

4e2
F 2

µν + |Dµφ|2 − U(φ) (10.6)

† Since the transverse size of the ANO string is of the order of m−1
V, H , see below, and the energy

density is well localized, some people refer to the ANO string as local. Strings occupying an
intermediate position between the global strings of Section 10.1 and the ANO strings, whose
transverse size can be arbitrary while their tension is finite, go under the name of semilocal. For
a review see [3]. An example of semilocal string is the CP(1) instanton provided one elevates
the CP(1) model to four dimensions. The semilocal strings will not be considered in this course.
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φ= vei(n)α

φ= veiα at r⇾∞ 
or
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∫d2x⊥  |∂μ φ|2 ⇾ ∞ logarithmically; 
Hence,

Ai = − εij xj /r2 ⇾ 0 ⇦ Pure Gauge

For arbitrary r
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the integrand of Eq. (10.20) vanish,

B + ne e2
(
|φ|2 − v2

)
= 0 , (D1 + iD2)φ = 0 . (10.22)

(Let me parenthetically note that within the Landau–Ginzburg approach to
superconductivity the same system of the first order differential equations
was derived by G. Sarma in the early 1960s, see Ref. [4].)

If Eqs. (74.10) are satisfied, the vortex mass (string tension) is String tension

T = 2πv2 n , (10.23)

where the winding number n counts the quantized magnetic flux. The linear
dependence of the n-vortex mass on n implies the absence of their interac-
tion.

To solve Eq. (74.10) one must find an appropriate ansatz. For the elemen-
tary n = 1 vortex it is convenient to introduce two profile functions ϕ(r)
and f(r) as follows:

φ(x) = v ϕ(r)eiα , Ai(x) = − 1

ne
εij

xj

r2
[1− f(r)] , (10.24)

where r =
√

x2 + y2 is the distance and α is the polar angle, see Fig. 74.1.
Moreover, it is convenient to introduce a “dimensionless distance” ρ,

ρ = ne e v r. (10.25)

A remarkable fact: the ansatz (10.24) goes through the set of equations
(74.10). As a result, we get the following two equations on the profile func-
tions

−1

ρ

df

dρ
+ ϕ2 − 1 = 0 , ρ

dϕ

dρ
− f ϕ = 0 . (10.26)

The boundary conditions for the profile functions are rather obvious from
the form of the ansatz (10.24) and from our previous discussion. At large
distances

ϕ(∞) = 1 , f(∞) = 0 . (10.27)

At the same time, at the origin the smoothness of the field configuration at
hand (the absence of singularities) requires

ϕ(0) = 0 , f(0) = 1 . (10.28)

These boundary conditions are such that the scalar field reaches its vacuum
value at infinity. Equations (74.14) with the above boundary conditions lead
to a unique solution for the profile functions, although its analytic form is
not known. Numerical solution is presented in Fig. 10.4. At large r the
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Fig. 10.4. Profile functions of the string as functions of the dimensionless variable
mV r. The gauge and scalar profile functions are given by f and ϕ, respectively.

asymptotic behavior of the profile functions is

1− ϕ(r) ∼ exp(−mV r) , f(r) ∼ exp(−mV r) . (10.29)

The ANO vortex breaks the translational invariance. It is characterized
by two collective coordinates (moduli) x0 and y0 which mark the position
of the string center.

10.4 Non-critical vortex/string

If mH ̸= mV the Bogomol’nyi completion does not work. One has to solve
the second-order equations of motion which follow from minimization of the
energy functional in Eq. (10.12) with U(φ) given in Eq. (10.2). The ansatz
(10.24) remains to be applicable. It goes through the second-order equations
of motion and yields

d

dr

(
1

r

df

dr

)
− 2n2

ee
2v2 ϕ

2

r
f = 0 ,

− d

dr

(
r

dϕ

dr

)
+ 2λv2rϕ

(
ϕ2 − 1

)
+
ϕ

r
f2 = 0 . (10.30)

These equations must be supplemented by the boundary conditions (74.15)
and (74.16). One can solve them numerically.

In the limiting case of small mV (i.e. mH/mV ≫ 1) one can rather easily
find the vortex mass/string tension with logarithmic accuracy. This was first
done in original Abrikosov’s paper in 1957. Let us linearize Eqs. (10.30) at

No 
superconductivity No Br
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z

α

x0 ← string center in perp. plane

π

B  (magnetic field)    Flux quantized

massless (gapless) excitations


correspond to oscilations in the 


perpendicular plane (transla-


tional zero modes)



1(SU(2)×U(1)) = Z2: rotate by π around 3-d axis in SU(2) 



   → -1;  another -1 rotate by π in U(1) 

✭ ANO strings are there because of U(1)!


✭  New strings:

st
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y
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π1(U(1)×SU(2)) nontrivial due to Z2 center of SU(2)z

α

ANO
p

x eia
✓

1 0
0 1

◆

T=4πξ

Non-Abelian
p

x

✓
eia 0
0 1

◆

TU(1)±T3SU(2)

T=2πξ
SU(2)/U(1) ←orientational moduli; O(3) σ model

x0 ← string center in perp. plane

π



family: the genuine vacuum plus metastable ones entangled with the genuine vacuum

in the θ evolution.

As soon as string tensions in our model are classically determined by their U(1)

charges the tension of k-string is given by

Tk = 2π k ξ + O(Λ2), (45)

where corrections of order of Λ2 are induced by the quantum effects in the effective

world sheet theory.

If we add up N strings, the resulting conglomerate is connected to the ANO

string.

6 Kinks are confined monopoles

The CP (N − 1) models are asymptotically free theories and flow to strong coupling

in the infrared. Therefore, the non-Abelian strings discussed in the previous sec-

tions are in a highly quantum regime. To make contact with the classical Abelian

strings we can introduce parameters which explicitly break the diagonal color-flavor

SU(N)diag symmetry lifting the orientational string moduli. This allows us to obtain

a quasiclassical interpretation of the confined monopoles as string junctions, and fol-

low their evolution from (almost) ’t Hooft–Polyakov monopoles to highly quantum

sigma-model kinks. In the supersymmetric case this was done in Refs. [12, 11, 13].

6.1 Breaking SU(N)diag

In order to trace the monopole evolution we modify our basic model (3) introducing,

in addition to the already existing fields, a complex adjoint scalar field aa,

S =
∫

d4x

{

1

4g2
2

(

F a
µν

)2
+

1

4g2
1

(Fµν)
2 +

1

g2
2

|Dµa
a|2

25+ Tr (∇µΦ)† (∇µΦ) +
g2
2

2

[

Tr
(

Φ†T aΦ
)]2

+
g2
1

8

[

Tr
(

Φ†Φ
)

− Nξ
]2

+
1

2
Tr

∣

∣

∣aaT a Φ + Φ
√

2M
∣

∣

∣

2
+

i θ

32 π2
F a

µνF̃
a µν

}

, (46)

where Dµ is a covariant derivative acting in the adjoint representation of SU(N) and

M is a mass matrix for scalar quarks Φ. We assume that it has a diagonal form

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m1 ... 0

... ... ...

0 ... mN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (47)

with the vanishing sum of the diagonal entries,

N
∑

A=1

mA = 0 . (48)

Later on it will be convenient to make a specific choice of the parameters mA, namely,

M = m × diag
{

e2πi/N , e4πi/N , ..., e2(N−1)πi/N , 1
}

, (49)

where m is a single common parameter, and the constraint (48) is automatically

satisfied. We can (and will) assume m to be real and positive.

In fact, the model (46) presents a less reduced bosonic part of the N = 2 super-

symmetric theory than the model (3) on which we dwelled above. In the N =

2 supersymmetric theory the adjoint field is a part of N = 2 vector multiplet. For

the purpose of the string solution the field aa is sterile as long as mA = 0. Therefore,

it could be and was ignored in the previous sections. However, if one’s intention is to

connect oneself to the quasiclassical regime, mA ̸= 0, and the adjoint field must be

reintroduced.

For the reason which will become clear shortly, let us assume that, although

mA ̸= 0, they are all small compared to
√

ξ,

m ≪
√

ξ ,

26

Prototype model
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U(2) gauge group, 2 flavors of (scalar) quarks


SU(2) Gluons Aaμ + U(1) photon + gluinos+ photino

F =
✓

j11j12

j21j22

◆

M =
✓

m 0
0�m

◆

Basic idea:


• Color-flavor locking in the bulk → Global symmetry G;        

• G is broken down to H on the given string;



• G/H coset; G/H sigma model on the world sheet.
Φ=√ξ × I



SU(2)/U(1) = CP(1)∼O(3) sigma model

classically gapless excitation

“Non-Abelian” string is formed if all non-
Abelian degrees of freedom participate in 
dynamics at the scale of string formation
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S =
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f̄∂µ f� (Dm)2f̄f
(1+ f̄f)2 + f ermions
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z

Z   string junction

B B

B B

2

3 3

Figure 2: Z2 string junction.

have the same tension. Hence, two different strings form a stable junction. Figure 2
shows this junction in the limit

ΛCP(1) ≪ |∆m| ≪
√

ξ (4)

corresponding to the lower left corner of Fig. 1. The magnetic fluxes of the U(1) and
SU(2) gauge groups are oriented along the z axis. In the limit (4) the SU(2) flux
is oriented along the third axis in the internal space. However, as |∆m| decreases,
fluctuations of Ba

z in the internal space grow, and at ∆m → 0 it has no particular
orientation in SU(2) (the lower right corner of Fig. 1). In the language of the
worldsheet theory this phenomenon is due to restoration of the O(3) symmetry in
the quantum vacuum of the CP(1) model.

The junctions of degenerate strings present what remains of the monopoles in
this highly quantum regime [11, 12]. It is remarkable that, despite the fact we are
deep inside the highly quantum regime, holomorphy allows one to exactly calculate
the mass of these monopoles. This mass is given by the expectation value of the kink
central charge in the worldsheet CP(N − 1) model (including the anomaly term).

What remains to be done? The most recent investigations zero in on N = 1
theories, which are much closer relatives of QCD than N = 2. I have time to say
just a few words on the so-called M model suggested recently [13] which seems quite
promising.

2.3 M model

The unwanted feature of N = 2 theory, making it less similar to QCD, is the
presence of the adjoint scalar field. One can get rid of it making it heavy. To
this end we must endow the adjoint superfield by a mass term. Supersymmetry of
the model becomes N = 1. Moreover, to avoid massless modes in the bulk theory
(in the limit of very heavy adjoint fields) we must introduce a “meson” superfield
MA

B analogous to that emerging in the magnetic Seiberg dual, see Sect. 1, with an
appropriately superpotential. After the adjoint field is eliminated the theory has no
’t Hooft–Polyakov monopoles in the quasiclassical limit. Nevertheless, a non-Abelian

6

⇠⇠⇠⇠ ⇠⇠⇠⇠ ⇠⇠⇠⇠⇠⇠⇠⇠ ⇠⇠⇠⇠

= kink

Evolution in dimensionless parameter m2/ξ
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ΛCP(1)

Λ
−1

CP(1)

Δ m
−1

ξ
−1/2

ξ=0

Δ m =0

ξ=0

Δ m >> ξ
1/2

The ’t Hooft−Polyakov
monopole

Almost free monopole

B

ξ
−1/2

< << Δ m < ξ
1/2

Confined monopole,
quasiclassical regime

Δ m 0

Confined monopole,
highly quantum regime

Figure 1: Various regimes for monopoles and strings.

was in full swing.1 BPS domain walls, analogs of D branes, had been identified
in supersymmetric Yang–Mills theory. It had been demonstrated that such walls
support gauge fields localized on them. and BPS saturated string-wall junctions
had been constructed [8]. And yet, non-Abelian flux tubes, the basic element of the
non-Abelian Meissner effect, remained elusive.

2.1 Non-Abelian flux tubes

They were first found [9, 10] in U(2) super-Yang–Mills theories with extended su-
persymmetry, N = 2, and two matter hypermultiplets. If one introduces a non-
vanishing Fayet–Iliopoulos parameter ξ the theory develops isolated quark vacua,
in which the gauge symmetry is fully Higgsed, and all elementary excitations are
massive. In the general case, two matter mass terms allowed by N = 2 are unequal,
m1 ̸= m2. There are free parameters whose interplay determines dynamics of the
theory: the Fayet–Iliopoulos parameter ξ, the mass difference ∆m and a dynamical
scale parameter Λ, an analog of the QCD scale ΛQCD. Extended supersymmetry
guarantees that some crucial dependences are holomorphic, and there is no phase
transition.

The number of colors can be arbitrary. The benchmark model supporting non-
Abelian flux tubes has the gauge group SU(N)×U(1) and N flavors. The N =
2 vector multiplet consists of the U(1) gauge field Aµ and the SU(N) gauge field Aa

µ,

1This program started from the discovery of the BPS domain walls in N = 1 supersymmetric
gluodynamics [7].

4

Text



Kink = Confined Monopole



✵ Kinks are confined in 4D (attached to strings).


✵ ✵ Kinks are confined in 2D: 
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Dewar flask

4D ↔ 2D Correspondence

☛     World-sheet theory ↔ strongly coupled bulk 
theory inside   



World-sheet models on non-Abelian Strings

   Bulk Theory parameters

SU(N)×U(1),  Nf,   (S)quark masses

 Geometric vs Gauged descriptions
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South Pole

Ray of light
piercing the plane

and the sphere

North Pole

Plane touching S2 at the

x

S⃗

North Pole

φ2

φ

x

φ1

Fig. 27.2. Introduction of the complex coordinates on S2 through the stereographic
projection.

This is a two-dimensional plane which admits introduction of the complex
coordinate φ in a standard manner: if φ1 and φ2 are Cartesian coordinates,
φ = φ1 + iφ2. A ray of light is emitted from the South pole; it pierces the
sphere and the plane at the points denoted by small crosses. We then map

Stereographic
projection of a
sphere onto a

planethese points onto each other,

S1 =
2φ1

1 + φ2
1 + φ2

2

, S2 =
2φ2

1 + φ2
1 + φ2

2

, S3 =
1− φ2

1 − φ2
2

1 + φ2
1 + φ2

2

. (27.7)

The inverse transformation has the form

φ =
S1 + i S2

1 + S3
. (27.8)

It is clear that this is one-to-one correspondence. The only point which
deserves a comment is the south pole (S1 = S2 = 0 , S3 = −1); it is
mapped onto infinity. Since physically this is a single point on the target
space, only such functions of φ are allowed for consideration that have a
well-defined limit at |φ|→∞, irrespective of the direction in the φ plane.

After a few quite simple but rather tedious algebraic transformations one

O(3) = CP(1)

1D complex plane (in general, N-1 dim)



Geometric/Sigma models on Kählerian target spaces



✷   L= GAB ∂μΦΑ ∂μΦΒ ,     μ= 0, z  or 1,2   

   GAB =  (2/g2) (∂Ф ∂Ф) log ∑A (1 + ΦΑΦΑ) +...



        CP(N-1) ↔ SU(N)/SU(N-1)×U(1)

RAB = GAB × (Ng2/2)

Kähler potential
AF, IR strongly coupled



Gauged/Sigma models on Kählerian target spaces



 

ni, ni,  i=1,2,…, N          2N rdof
nini = 1,            2N - 1  rdof

U(1) gauging

322 Isotropic Ferromagnet: O(3) Sigma Model and Extensions

27.5 An alternative formulation of CP(N − 1) models

The formulation of the CP(N − 1) model discussed in Section 27.4 is based
on the explicit geometric description of the target space. In fact, many
people refer to it as the geometric formulation. Now we will get acquainted
with an alternative formulation known as the gauged formulation.

In constructing the Lagrangian we start from an N -plet of complex “ele-
mentary” fields ni where i = 1, 2, ..., N . The fields ni are scalar (i.e. spin-0)
and transform in the fundamental representation of SU(N). These fields are
subject to a single constraint

n̄i n
i = 1 , (27.17)

where the bar stands for the complex conjugation. Thus, we have 2N real
fields with one constraint, which leaves us with 2N − 1 real degrees of free-
dom. From Section 27.4 we know that CP(N − 1) model has 2N − 2 real
degrees of freedom. Thus, we must yet eliminate one degree of freedom.
This is achieved through a U(1) gauging. We introduce an auxiliary U(1)
gauge field Aµ, with no kinetic term, to make the Lagrangian locally U(1)
invariant. The possibility of imposing a gauge condition reduces the number
of degrees of freedom to 2N − 2.

Concretely, we specify the Lagrangian in the following way [2]:

Gauged
formulation: in

the literature g−2

is often denoted
as β

L =
2

g2

∣∣Dµni
∣∣2 , (27.18)

where the covariant derivative Dµ is defined as

Dµni ≡ (∂µ + iAµ) ni .

In terms of these fields the θ term takes the form

Lθ =
θ

2π
εµν∂µAν . (27.19)

The fact that the θ term is a full derivative is explicit in this expression, as
is the local U(1) invariance of the model at hand.

Since the field Aµ enters L without derivatives, one can eliminate it by
virtue of equations of motion,

Aµ =
i

2

(
n̄i

↔
∂µ ni

)
, (27.20)

where the constraint (27.17) is used. If we insert the above expression in
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where the constraint (27.17) is used. If we insert the above expression in
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27.5 An alternative formulation of CP(N − 1) models

The formulation of the CP(N − 1) model discussed in Section 27.4 is based
on the explicit geometric description of the target space. In fact, many
people refer to it as the geometric formulation. Now we will get acquainted
with an alternative formulation known as the gauged formulation.

In constructing the Lagrangian we start from an N -plet of complex “ele-
mentary” fields ni where i = 1, 2, ..., N . The fields ni are scalar (i.e. spin-0)
and transform in the fundamental representation of SU(N). These fields are
subject to a single constraint

n̄i n
i = 1 , (27.17)

where the bar stands for the complex conjugation. Thus, we have 2N real
fields with one constraint, which leaves us with 2N − 1 real degrees of free-
dom. From Section 27.4 we know that CP(N − 1) model has 2N − 2 real
degrees of freedom. Thus, we must yet eliminate one degree of freedom.
This is achieved through a U(1) gauging. We introduce an auxiliary U(1)
gauge field Aµ, with no kinetic term, to make the Lagrangian locally U(1)
invariant. The possibility of imposing a gauge condition reduces the number
of degrees of freedom to 2N − 2.

Concretely, we specify the Lagrangian in the following way [2]:

Gauged
formulation: in

the literature g−2

is often denoted
as β

L =
2

g2

∣∣Dµni
∣∣2 , (27.18)

where the covariant derivative Dµ is defined as
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WCP(N,M)              [Nf = 2N]

2.2 N = (0, 2) weighted sigma-model: heterotic deformation

As is well-known from early studies of two-dimensional supersymmetric sigma-models [29],
there is no smooth N = (0, 2) deformation of the N = (2, 2) CPN�1 sigma-model3. On the
other hand, it is possible to have deformation of the C⇥CPN�1 model, which is the relevant
e�ective theory emerging in when studying the non-Abelian vortices (the C factor describes
the translation modes of the vortex). From the additional C piece, one can keep only a
right-handed fermion, while the scalar and left-handed fermionic super-partners is free. A
similar situation occurs for the weighted sigma-model4. As a result we consider the following
Lagrangian

Lhet
WCPNF�1 = LWCPNF�1 + i

2 �̄R�L�R � 2|⌥|2|⌃|2 � [i⌥⇤L�R + H.c.] . (2.6)

The heterotic coupling ⌥ is introduced by means of an additional right-handed fermion �R.
Obviously the modification dramatically changes the physics of the sigma-model at hand.
For example, the Witten index is modified from N � Ñ to zero as in the CPN�1 case. This
observation is indeed consistent with supersymmetry breaking [13,31] occurring in the model.

Adding the twisted masses. Twisted masses can be easily introduced into the model
by first gauging the U(1)NF�1 independent flavor symmetries and then setting to zero all the
fields in the additional twisted multiplets but not the lowest components [24]. The resulting
Lagrangian takes the following form

Lhet
WCPNF�1 = |⇤µni|2 + |⇤µ⇧j|2 + i⌅̄L, i⇤R⌅i

L + i⌅̄R, i⇤L⌅i
R + i⇥̄L, j⇤R⇥j

L + i⇥̄R, j⇤L⇥j
R

�
N�1 

i=0

|⌃ �mi|2 |ni|2 �
Ñ�1 

j=0

|⌃ � µj|2 |⇧j|2 �D
�
|ni|2 � |⇧j|2 � r0

⇥

+

⇤
in̄i

�
⇤L⌅i

R � ⇤R⌅i
L

⇥
� i

N�1 

i=0

(⌃ �mi) ⌅̄R, i⌅
i
L + H.c.

⌅

+

⇧

⌥�i⇧̄j

�
⇤L⇥j

R � ⇤R⇥j
L

⇥
+ i

Ñ�1 

j=0

(⌃ � µj) ⇥̄R, j⇥
j
L + H.c.

⌃

�

+ i
2 �̄R�L�R � [i⌥⇤L�R + H.c.]� 2|⌥|2|⌃|2 . (2.7)

For zero values of the twisted masses there is a U(1) R-symmetry under which the fermions
⌅i
R, ⇥j

R, ⇤R (⌅i
L, ⇥j

L, ⇤L) have charge +1(�1), whereas ⌃ has charge +2. A generic choice of the
masses mi and µj breaks this symmetry completely. Instead, we make the following choice
for the masses

mk = m e2�i k
N , k = 0, . . . , N � 1 ,

µl = µ e2�i l
Ñ , l = 0, . . . , Ñ � 1 . (2.8)

3See Refs. [9, 30] for a discussion of this issue in a context related to non-Abelian vortices
4In fact, it is possible to introduce N = (0, 2) deformations of the weighted sigma-model without in-

troducing any new degrees of freedom, or C factors. However, all the possible deformations di�erent from
the one considered in the text do not arise in the context of non-Abelian vortices. Nevertheless, it may be
interesting to study the e�ects of such deformations. For more details on this aspect, see Ref. [9].

5

representation [27]. The model can be built out of N positively charged fields ni, Ñ negatively
charged fields ⌃j and a non-dynamical auxiliary field. The full Lagrangian, including the
fermionic superpartners can be written in a superfield formalism which make supersymmetry
manifest (see Sec. A). The Lagrangian (A.1) has the following component expansion

LWCPNF�1 = |⌅µni|2 + |⌅µ⌃j|2 � |⌥|2|ni|2 � |⌥|2|⌃j|2 �D
�
|ni|2 � |⌃j|2 � r0

⇥

+ i⌅̄L, i⌅R⌅i
L + i⌅̄R, i⌅L⌅i

R + i⇥̄L, j⌅R⇥j
L + i⇥̄R, j⌅L⇥j

R +

+
⇤
in̄i

�
⇤L⌅i

R � ⇤R⌅i
L

⇥
� i⌥⌅̄R, i⌅

i
L � i⌃̄j

�
⇤L⇥j

R � ⇤R⇥j
L

⇥
+ i⌥⇥̄j

R⇥j
L + H.c.

⌅
,

(2.1)

where the covariant derivatives are given by

⌅µni = (�µ � iAµ)ni, ⌅µ⌃j = (�µ + iAµ)⌃j . (2.2)

The fields Aµ, ⌥, ⇤L,R and D all belong to the same N = 2 supermultiplet, they are non-
dynamical, and can be integrated out using their equations of motion. However, as we shall
see later, in strongly coupled phases these auxiliary fields do become dynamical and describe
particles in the low energy e⇥ective theory.

The model has a unique parameter which determines the strength of the interactions, the
two-dimensional Fayet-Iliopoulos term r0 [28]. Classically, the model has a continuous set of
vacua determined by the vacuum equation

N�1 

i=0

|ni|2 �
Ñ�1 

j=0

|⌃j|2 = r0 . (2.3)

The first and the most important quantum e⇥ect is the generation of a dynamical scale �
through dimensional transmutation. In fact, the Fayet-Iliopoulos term gets renormalized,
flowing with respect to the energy scale � through the following one loop expressions

r(�) = r0 �
N � Ñ

4⇧
log

⌥
M2

UV

�2

�
⇤ �N � Ñ

4⇧
log

⌥
�2

�2

�
. (2.4)

The theory is thus asymptotically free for N > Ñ . From the expression above we can also
guess that for N = Ñ we have super-conformal theory, and this is indeed the case [26].

Actually, thanks to supersymmetry, (2.4) is exact in perturbation theory because of the
vanishing of higher order contributions. Furthermore, integrating out the matter fields in
the functional integral we can find an exact superpotential for the field ⌥ [26, 21,22,24]

W (⌥) =
N � Ñ

4⇧
⌥
⇧
log
⇧⌥

�

⌃
� 1
⌃

. (2.5)

This superpotential includes all the non-perturbative instantonic contributions to the func-
tional integral. At the classical level the theory has two U(1) R-symmetries, U(1)R⇥U(1)V .
The first one is an axial symmetry, under which ⌥ has charge +2. This symmetry is anoma-
lous and is broken down to Z2N�2Ñ by the one-loop corrections. By minimization of the

superpotential (2.5) we find N � Ñ massive vacua. We will discuss in more details the
vacuum structure of the theory in Sec. 3.

4

∼

∼
(N,M)

|n|2 = 2β +  |ρ|2

N= M           Conformal / Remember N=M=2

Ricci flat CY // 10D critical string



★ ★ ★ ★ N =2 → N =(2,2)


               N =1 → N =(2,0) nonminimal


                                      (minimal)


                                    


 


               N = 0 → N = 0

bulk 2D world sheet

M. Shifman  6

   No 2D confinement



L    = GAB       i ferm

__
ΨA
_ Δ

ΨB + Riemann ΨΨΨΨ
__

N =(2,2)

L    = GAB       i ferm

__
ΨA
_ Δ

ΨB N =(0,2)minimal

R… R

nonminimalΔ L   =γRAB      R   i∂LφB ζRferm

_
ΨA
_

_

N =(0,2)
_

extra right-handed field 



M. Shifman 27

 m=m0( 

+ Tr (∇µΦ)† (∇µΦ) +
g2
2

2

[

Tr
(

Φ†T aΦ
)]2

+
g2
1

8

[

Tr
(

Φ†Φ
)

− Nξ
]2

+
1

2
Tr

∣

∣

∣aaT a Φ + Φ
√

2M
∣

∣

∣

2
+

i θ

32 π2
F a

µνF̃
a µν

}

, (46)

where Dµ is a covariant derivative acting in the adjoint representation of SU(N) and

M is a mass matrix for scalar quarks Φ. We assume that it has a diagonal form

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m1 ... 0

... ... ...

0 ... mN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (47)

with the vanishing sum of the diagonal entries,

N
∑

A=1

mA = 0 . (48)

Later on it will be convenient to make a specific choice of the parameters mA, namely,

M = m × diag
{

e2πi/N , e4πi/N , ..., e2(N−1)πi/N , 1
}

, (49)

where m is a single common parameter, and the constraint (48) is automatically

satisfied. We can (and will) assume m to be real and positive.

In fact, the model (46) presents a less reduced bosonic part of the N = 2 super-

symmetric theory than the model (3) on which we dwelled above. In the N =

2 supersymmetric theory the adjoint field is a part of N = 2 vector multiplet. For

the purpose of the string solution the field aa is sterile as long as mA = 0. Therefore,

it could be and was ignored in the previous sections. However, if one’s intention is to

connect oneself to the quasiclassical regime, mA ̸= 0, and the adjoint field must be

reintroduced.

For the reason which will become clear shortly, let us assume that, although

mA ̸= 0, they are all small compared to
√

ξ,

m ≪
√

ξ ,
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Λ

Figure 1: Plots of n and σ VEVs (thick lines) vs. m in the N = (2, 2)CP(N − 1)model

with twisted masses as in (2.2).

where we assumed for simplicity that m ≡ m0 is real and positive. (This is by no

means necessary; we will relax this assumption at the end of this section.) Note that
the phase factor of σ in (4.22) does not follow from (4.19). Rather, its emergence

is explained by explicit breaking of the axial U(1)R symmetry down to Z2N through
the anomaly and non-zero masses (2.2), see Appendix D, with the subsequent spon-

taneous breaking of Z2N down to Z2. Once we have one solution to (4.19) with the
nonvanishing σ we can generate all N solutions (4.22) by the Z2N transformation [6].

Although we derived Eq. (4.19) in the large-N approximation, the complexified

version of this equation,
N−1∏

i=0

(√
2σ − mi

)
= ΛN , (4.23)

is in fact, exact, since this equation as well as the solution (4.22) follow from the
Veneziano–Yankielowicz-type effective Lagrangian exactly derived in the N = (2, 2)
CP(N − 1) model in [35, 36, 7, 37, 28]. The Veneziano–Yankielowicz Lagrangian

implies (4.23) even at finite N .
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             Conclusions



★Non-Abelian strings in SUSY bulk → 
CP(N-1) models (heterotic & nonheterotic) 
on string; a wealth of phase transitions;



★2D ↔ 4D Correspondence; 



★A treasure trove of novel 2D models 
with intriguing dynamics.
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The simplest model with non-Abelian moduli

Thus, in the vortex core the φ expectation value vanishes and the original
U(1) gauge symmetry is restored. The transverse size of the ANO flux tube
∼ 1/mη,γ .

So far, this an absolutely standard construction. Now I will extend it.
Introduce a triplet field χi (here i = 1, 2, 3) endowed with a (globally) SO(3)
invariant interaction,

Lχ = ∂µχ
i ∂µχi − U(χ,φ) , (15)

U = γ
[

(

−µ2 + |φ|2
)

χiχi + β
(

χiχi
)2
]

, (16)

where γ is a (positive) coupling constant. For simplicity I will assume β > 1
and the field χ to be real. The parameter µ is real and positive, with the
condition

µ < v , (17)

but not much smaller. For the validity of our consideration we must require

γµ2 ≫ λv2 , (18)

so that the length scale of variation of the η, γ fields is larger than that of
the χ fields.

In the bulk the expectation value of φ does not vanish, |φ| = v. Equation
(16) implies then that χ is stable, no vacuum condensate of χ develops, and
the global O(3) symmetry remains unbroken. At the same time, in the vortex
core φ vanishes destabilizing the χ field which develops an expectation value,

χ2 =
µ2

2β
, (19)

implying, in turn, that in the core the O(3) symmetry is spontaneously bro-
ken. While the absolute value of χi is fixed at |χi

∗| = µ/
√
2β by the energy

minimization the angular orientation of the vector χi is arbitrary. Indepen-
dently of χi

∗, the pattern of the symmetry breaking in the string core is

O(3) → O(2) . (20)

Correspondingly, the vortex solution (more exactly, its χ component) will
depend on two moduli whose dynamics is determined by the O(3)/O(2) =
CP (1) coset. Differentiating the solution with respect to these two collective

4

Extra term to be added:

described by the Lagrangian

Lv = −
1

4e2
F 2

µν + |Dµφ|2 − V (φ) (1)

where
Fµν = ∂µAν − ∂νAµ , Dµφ = (∂µ − iAµ)φ . (2)

The potential energy V (φ) must be chosen in such a way as to ensure Higgsing
of U(1) in the bulk,

V = λ
(

|φ|2 − v2
)2

, (3)

where v is assumed to be real and positive (no loss of generality). In the
vacuum in the unitary gauge

Aµ = 0, φ = v . (4)

The U(1) photon is Higgsed and acquires the mass

mγ =
√
2ev , (5)

Imφ is eaten by the Higgs mechanism, while Reφ(x) = v + η(x)/
√
2, where

the real scalar field η(x) is not eaten up by the photon. Its mass is

mη = 2
√
λ v . (6)

We will assume that mη > mγ , but not much larger, i.e. mη ∼ mγ . This is
not crucial, though.

Now, as well-known, this model supports topologically stable vortices
(strings). Indeed, let us first consider all non-singular field configurations
that are static (time-independent) in the gauge A0 = 0. Then the energy
functional takes the form

E [A⃗(x⃗),φ(x⃗)] =
∫

dz
∫

d2x
[

1

4e2
FijFij + |Diφ|2 + V (φ)

]

= L×
∫

d2x
[

1

4e2
FijFij + |Diφ|2 + V (φ)

]

, (7)

where L → ∞ is the string length (it is assumed to be oriented along the
z axis), while the integral in the second line presents the string tension T .
Requiring T to be finite we observe that V (φ) → 0 at |x⃗⊥| → ∞, i.e.

|φ| → v at |x⃗⊥| → ∞ . (8)

2

+

Thus, in the vortex core the φ expectation value vanishes and the original
U(1) gauge symmetry is restored. The transverse size of the ANO flux tube
∼ 1/mη,γ .
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γµ2 ≫ λv2 , (18)
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4

i=1,2,3   χi real  
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(16) implies then that χ is stable, no vacuum condensate of χ develops, and
the global O(3) symmetry remains unbroken. At the same time, in the vortex
core φ vanishes destabilizing the χ field which develops an expectation value,

χ2 =
µ2

2β
, (19)

implying, in turn, that in the core the O(3) symmetry is spontaneously bro-
ken. While the absolute value of χi is fixed at |χi

∗| = µ/
√
2β by the energy

minimization the angular orientation of the vector χi is arbitrary. Indepen-
dently of χi

∗, the pattern of the symmetry breaking in the string core is

O(3) → O(2) . (20)

Correspondingly, the vortex solution (more exactly, its χ component) will
depend on two moduli whose dynamics is determined by the O(3)/O(2) =
CP (1) coset. Differentiating the solution with respect to these two collective

4

coordinates we get the explicit form of the zero modes. The low-energy theory
on the string world sheet is the CP (1) model for the orientational moduli
fields (in addition to two decoupled translational moduli fields), namely,

Lsws =
1

β

(

∂ani
) (

∂an
i
)

, nini = 1 , a = 0, 3 . (21)

The subscript sws means string world sheet.
Classically and in perturbation theory the above moduli fields are mass-

less. However, from the Coleman theorem we know that massless non-sterile
boson fields cannot exist in two dimensions [6]. And indeed, the exact solu-
tion of the CP (1) model (which is asymptotically free in the UV, but strongly
coupled in the IR [7]) exhibits a mass gap generation and complete restora-
tion of O(3). The would-be Nambu-Goldstone (NG) bosons on the string
world sheet become quasi-NG bosons, provided the mass scale Λ which is
nonperturbatively generated in CP(1) is small,

Λ ≪ v . (22)

If β ≫ 1 the above condition is met.

3 Non-Abelian moduli fields on domain walls

The general idea is the same as in Sect. 2: an unbroken global symmetry in
the vacuum combined with a domain wall which breaks a part of the above
global symmetry in its core. As a pedagogical example we will consider the
same set-up (15) and (16) in conjunction with the simplest model of the
complex field φ supporting an appropriate domain wall.

Such a model is given by the Lagrangian (see e.g. [5])

Lw = (∂µφ†)(∂µφ)− V (φ,φ†) , (23)

where

V (φ, φ̄) =

∣

∣

∣

∣

∣

∂W (φ)

∂φ

∣

∣

∣

∣

∣

2

, W (φ) =
m2

λ
φ−

λ

3
φ3 , (24)

and the constants m and λ are assumed to be real and positive.
The potential (24) implies two degenerate classical vacua,

φ∗ = ±v , v ≡
m

λ
. (25)
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χi = (μ2/2β)1/2 Si 

SiSi Si Si

Classically 2 gapless modes
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 Sworld sheet =(μ2/2β)∫ d2x (∂μSi) (∂μSi)



                      SiSi = 1



Clasically two “rotational” zero modes (or 1?).



                     Q Mechanically may be lifted
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☞ Goldstone modes (gapless excitations) on strings

★ Internal symmetries G→ H,


       ν”rel” = νG - νH ,   ν”non-rel” = (νG - νH)/2.



★ ★ This is not the case for geometric 


       symmetries! (Ivanov-Ogievetsky, 1975; Low-


       Manohar, 2002)


★ ★ ★ E.g. (structureless) string breaks two 
translations and two rotations, but one should consider 
only translational zero modes!!!



zy

xMzx & Mzy broken,
Tx & Ty broken .

ANO vortex string 
(flux tube)



Time derivatives

xx  nonrelativistic ☛ total derivative
.

Hence, either

xx  relativistic or  yx-xy  
. . . .

If x is canonic coordinate, y is canonic 
momentum,



                      [yx] = -i
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Mzx(z) ~ Tx

What if order parameter carries 

Lorentz indices?
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Perpendicular plane

x

0

z

Low-energy excitations (gapless modes) on vortices 

◊◊  ΔΗGL = (T/2)(∂zxperp ∂zxperp)  + h.d.      ➟ time derivatives can be 
linear. 


or quadratic.     

Nambu-Goto → String Theory

Kelvin modes or Kelvons


2 NG gapless modes in relat.


1 NG gapless mode in non-rel.

Eexcit<< mγ∼ev

L

Estr = TL + C/L

Counts # of gapless modes !

y
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In the ground state 
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Spin 1/2

P-wave paring

3He atoms

 L=1, S=1  ➟  Cooper pair order parameter eμi        3×3 matrix

Spin-orbit small, symmetry of H is 

1 Introduction

In this paper we report a new phenomenon which occurs in superfluids with a tensorial order
parameter.

Superfluid 3Helium is definitely one of the most interesting states of matter which can be
realized and studied experimentally [1]. It is also one of the most well-studied systems from a
theoretical point of view [2–5]. Unlike conventional superfluids, 3He atoms are fermions, and
can thus condense only after forming Cooper-like bosonic pairs [2]. The attractive interaction
between 3He atoms, which can be modeled by Van der Walls potentials, has a very strong
short-range repulsive core. This fact entails the dominance of the P -wave pairing. Moreover,
each 3He atom is a spin 1/2 particle. The (anti)-symmetry of the wave function for a pair
of identical fermions then implies that the 3He atoms form bound states with unit angular
momentum and unit spin. The consequence of this fact is that the order parameter describing
the condensate has a tensorial structure, and has to be described by a 3 by 3 matrix eµi,
where µ denotes spin and i orbital indices [3, 6, 7].

Low-energy physics of superfluids can be described by gapless exciatations of the Nambu-
Goldstone modes associated with spontaneously broken global symmetries. Two most im-
portant physical consequences of this are: (i) phonons associated with spontaneously broken
phase U(1)p symmetry and (ii) magnons associated with spontaneously broken SO(3) spin
symmetry [8], as well as topologically stable (global) vortices winding around the broken
symmetry. In the conventional superfluid, the breaking of an Abelian phase symmetry

Up(1)⇥ 1

leads to the existence of phonon excitations in the bulk. Moreover, the same breaking
implies the existence of topologically stable superfluid vortices [9]. A lattice of vortices can
be generated in a superfluid by rotating the sample [10–12].

In this paper we point out that, in addition to the Nambu-Goldstone modes in the bulk,
there exist novel Nambu-Goldstone modes – to be referred to as non-Abelian – localized on
the vortices.

As predicted long ago by Lord Kelvin, vortices support vibrating modes, called Kelvons,
which correspond to helical fluctuations of the vortex line [13, 11, 14]. These modes can be
interpreted as the Nambu-Goldstone modes arising because of the breaking of translational
and rotational symmetries by the vortex. Both, the bulk and the Kelvin excitations have
been recently observed [15].

In an unconventional superfluid, such as 3He, however, the gapless mode situation is
more complicated and interesting. Since the order parameter is a tensor, spatial rotations
are usually broken by the condensate. Moreover, several phases are possible, with di�erent
symmetry breaking patterns.

If we neglect spin-orbit interaction, rotations of spinorial and orbital indices can be
performed independently; the full symmetry of 3He is

G = U(1)p � SOS(3)� SOL(3) ,

where SOS(3) and SOL(3) are spin and angular momentum of condensates. Two possible
phases in thee dimensions are theoretically predicted and experimentally observed in the ab-
sence of external magnetic fields. In the A-phase in three dimensions the symmetry breaking

2

in the bulk is as follows1 (in the absence of external magnetic fields):

G = Up(1)� SOS(3)� SOL(3)⇥ HA = U(1)� � U(1)S,

while in the more symmetric B phase, the ground state preserves a locked SO(3) symmetry:

G = Up(1)� SOS(3)� SOL(3)⇥ HB = SO(3)S+L.

In field-theoretical language, we identify the locked SO(3)S+L symmetry as a usual spatial ro-
tation. The expressions above imply that both phases admit a non-trivial set of non-Abelian
Goldstone bosons in the bulk, generated by the breaking of non-Abelian global symmetries.
The number of the Nambu-Goldstone excitations in the bulk is dim G - dim HA,B. This more
complicated than usual spectrum of the gapless bulk excitations is one of the peculiarities
of 3He, which distinguishes 3He from conventional superfluids.

Both phases described above, A and B, support a stable lattice of superfluid vortices
appearing once the sample is rotated. The breaking of translational invariance by the vortices
leads to the presence of gapless Kelvin modes on the vortices. Both the non-Abelian bulk
modes and the Kelvin modes were studied and observed in experiments with superfluid 3He
refs[?].

We will argue that a new type of gapless modes localized on the vortices in the B-phase
of superfluid 3He exists. While Kelvons can be interpreted as the Nambu-Goldstone modes
arising from the breaking of translations, excitations we propose arise independently, from
the breaking of the spatial rotation symmetry HB = SO(3)S+L by the vortex solution.

It is known that the B phase is divided into two sub-phases according to the core structure
of the mass vortices: either axially symmetric core under rotations around the vortex or
axially asymmetric core [16, 17]. Note that the breaking of the axial symmetry in the core
of the mass vortices has already been observed []. Such a breaking of the axial symmetry
gives rise to a U(1) Nambu-Goldstone mode localized on the given mass vortex. Therefore,
the conventional U(1) Nambu-Goldstone mode on the mass vortex exists or does not exist
depending on whether the core is asymmetric or symmetric, respectively.

Now, our assertion is as follows. There exist two more gapless modes, in addition to
the above mode, due to breaking of the bulk symmetry HB = SO(3)S+L on the vortex. In
other words, in total there exist two or three gapless modes having linear dispersions, in
accordance with the fact that

SO(3)S+L/U(1)z ⇤ S2

relevant for the axially symmetric core while SO(3)S+L for the asymmetric core.
As far as we know, this new type of excitations was not discussed in the literature, neither

observed in experiments. This is the first example of spatially localized non-Abelian Nambu-
Goldstone modes in condensed matter physics. The arguments that lead us to this conclusion
are explained in detail in Section 3. They can be applied in general to unconventional
superfluids with tensorial order parameters. We are motivated by analogous developments
in high-energy physics, in certain gauge field theories.

1The unbroken U(1)0 symmetry in the A phase appears as a combination of the Up(1) and one of the
SO(3) generators.

3

Hence, contrived NG modes in the bulk!



6 Spin-orbit interaction

The “two-component” φ-χ string solution presented above spontaneously
breaks two translational symmetries, in the perpendicular x, y plane, and
O(3) rotations. The latter are spontaneously broken by the string orientation
along the z axis (more exactly, O(3)→O(2)), and by the orientation of the
spin field χi inside the core of the flux tube introduced through Si.

Now, we deform Eq. (3) by adding a spin-orbit interaction [4],

Lχ = ∂µχ
i ∂µχi − ε(∂iχ

i)2 − U(χ,φ) , (35)

where ε is to be treated as a perturbation parameter.
If ε = 0 (i.e. Eq. (3) is valid) the breaking O(3)→O(2) produces no extra

zero modes (other than translational) in the φ-Aµ sector [6, 7]. Due to the
fact that χ ̸= 0 in the core, we obtain two extra moduli Si on the world sheet.
This is due to the fact that at ε = 0 the rotational O(3) symmetry is enhanced
[3, 4] because of the O(3) rotations of the “spin” field χi, independent of the
coordinate spacial rotations.

What happens at ε ̸= 0 , see Eq. (35)? If ε is small, to the leading order in
this parameter, we can determine the effective world-sheet action using the
solution found above at ε = 0. Two distinct O(3) rotations mentioned above
become entangled: O(3)×O(3) is no longer the exact symmetry of the model,
but, rather, an approximate symmetry. The low-energy effective action on
the string world sheet takes the form

S =
∫

dt dz
(

LO(3) + Lx⊥

)

,

LO(3) =

{

1

2g2

[

(

∂kS
i
)2

− ε
(

∂zS
3
)2
]

}

−M2
(

1− (S3)2
)

, (36)

Lx⊥
=

T

2
(∂kx⃗⊥)

2 −M2(S3)2 (∂zx⃗⊥)
2

+ 2M2
(

S3
) (

S1∂zx1⊥ + S2∂zx2⊥

)

, (37)

where x⃗⊥ = {x(t, z), y(t, z)} are the translational moduli fields, and T is the
string tension. The mass term M2 is

M2 = ε v2
πI2
2cβ

, (38)
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M2 = ε v2
πI2
2cβ

, (38)
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where x⃗⊥ = {x(t, z), y(t, z)} are the translational moduli fields, and T is the
string tension. The mass term M2 is

M2 = ε v2
πI2
2cβ

, (38)
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where x⃗⊥ = {x(t, z), y(t, z)} are the translational moduli fields, and T is the
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M2 ∝ εEntanglement!
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◊      Assume χi is spin field!   

◊◊      Add  ΔL = ε (∂iχi)( ∂kχk )


                                

✸ If  ε → 0, geometric symmetry is enhanced


               Poincaré × O(3)


          

✸✸  Two extra zero modes 



What if ε≠0 but small?


ΔCP(1)Sworld sheet = ε∫d2x {(∂zS3)2 - M2[1-(S3)2]}
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string world sheet is

S =
∫

dt dz
(

LO(3) + Lx⊥

)

,

LO(3) =

{

1

2g2

[

(

∂aS
i
)2

+ ε
(

∂zS
3
)2

]

}

−M2
(

1− (S3)2
)

, (5)

Lx⊥
=

T

2
(∂ax⃗⊥)

2 − M̃2
(

S3
)2

(∂zx⃗⊥)
2 , (6)

where x⃗⊥ = {x(t, z), y(t, z)} are the translational moduli fields, three orien-
tational (quasi)moduli fields Si(t, z) are constrained (i = 1, 2, 3),

Si Si = 1 , (7)

a = t, z, are the string world-sheet coordinates, and T is the string tension.
The constants g2, M2, and M̃2 are

g2 ∼ βγ , M2 ∼ M̃2 ∼ εµ2/β , (8)

assuming µ2 ∼ v2. If ε → 0 (i.e. M2 = M̃2 = 0) we recover the standard
O(3) sigma model, with the target space O(3)/O(2) and two moduli fields
(gapless excitations). With nonvanishing but small ε the gapless rotational
excitations become quasigapless 4 (note that M2 ∼ ε). The two-dimensional
Lorentz boost is no longer a symmetry, since (as was mentioned above), the
Lorentz boosts are explicitly broken by the ε(∂iχi)2 term in four dimensions,
see (4).

In high-energy physics M2 is referred to as the twisted mass [11]. In
condensed matter the ε = 0 limit of LO(3) is known as the Heisenberg an-
tiferromagnet model. Then the last term in (5) can be interpreted as an
external magnetic field of a special form giving rise to an isotropy term (e.g.
[12] and discussion therein).

The impact of the mass term in (5) depends on the sign of M2 (inherited
from ε). If M2 is positive the ground state of the theory – the vacuum –
is achieved at S3 = ±1, i.e. the spin vector in the flux tube core is aligned
with the tube axis (the so-called easy axis). If M2 is negative, the ground
state is achieved at S3 = 0, i.e. the spin vector is perpendicular to the
axis [12] (the so-called easy plane). Then the vacuum manifold is developed

4We assume that M2 ≪ T . At weak coupling in the bulk γ ≪ 1 and, hence, g2 ≪ 1.

4

★    EXTRA (quasi)gapless modes ★


★ ★  Translational (Kelvon) and 
orientational (spin) modes mix with 
each other ★ ★
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Abstract

We discuss flux tubes in systems with U(1) gauge, and spin-orbit locked
SO(3)

S+L

symmetry. The spin-orbit locking is achieved explicitly in the
Lagrangian by introducing a parity violating twist term which causes the
spontaneous breaking of SO(3)

S+L

! SO(2). Additionally, this term causes
a spontaneous breaking of the translational symmetry along a particular
direction. Thus, the system appears with a cholesteric vacuum under certain
conditions of the parameter space. With this term, the system admits U(1)
topologically stable vortices with additional structure in the vortex cores.
This added structure leads to additional moduli appearing in the low energy
dynamics. We determine these solutions and their low energy theory.
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14 With Peterson & Tallarita

The model obviously supports the Abrikosov flux tube. Inside the tube, the
spin field �

i

is excited giving rise to gapless (or quasigapless) excitations of
non-Abelian type, localized on the flux tube.

Now we would like to make the next step and introduce a twist term
L
"

which violates parity through mixing of the “spin term” with angular
momentum,

L = L
0

+ L
�

+ L
"

, L
"

= �⌘"
ijk

�
i

@
j

�
k

, (7)

where ⌘ is a deformation parameter. The spatial kinetic terms of �
i

including
the twist L

"

, is recognized as the Frank-Oseen free energy density of an
isotropic chiral nematic liquid crystal [7]. Note that the twist term is linear
in derivatives. If ⌘ is large enough, a vacuum expectation value of �

i

develops
with a cholesteric structure.

L
"

also breaks the orbital rotational part of the Lorentz symmetry im-
plying a spin-orbit locked symmetry of the full Lagrangian,

SO(3)
L

⇥ SO(3)
S

! SO(3)
S+L

. (8)

The energy density derived from the Lagrangian (7) is
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Our first task is to study the vacuum (ground state) of the dynamical system
described by (7) or (9).

3 Generalities

Assuming that all couplings of the model at hand are small in what follows
we will solve static classical equations of motion (i.e. we will limit ourselves
to the quasiclassical approximation). The Lagrangian (7) contains a number
of constants: e, �, � and � (dimensioneless couplings) and dimensionful
parameters v, µ and ⌘. The mass of the elementary excitations of the charged
field � is
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In the next sections we will rescale all quantities to appear below to make
them dimensionless, for instance, distance in the direction of the flux tube
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z̃ = m
�

z , (11)

3

Δ

P-odd, spin-orbit

distance in the perpendicular direction

⇢ = m
�

p

x2 + y2 , (12)

and so on. Other dimensionless parameters are

b =
�(c� 1)

4�c
, c =

v2

µ2

, a =
e2

2�
, ⌘̃ = ⌘/m

�

. (13)

The field �
i

being represented in Cartesian coordinates takes the form

�
i

=
µp
2�

n

�̃
x

(x, y, z), �̃
y

(x, y, z), �̃
z

(x, y, z)
o

. (14)

The static classical equations of motion are derived by extremization of
energy (9), in a general coordinate system they read
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is the standard curved space covariant derivative.

4 Ground state

Inspection of L
"

in the Lagrangian (7) – in particular, the fact that it is of
the first order in derivative – prompts us that, generally speaking, in the
ground state translational invariance will be spontaneously broken. One
can always assume that this breaking is aligned in the z direction. Then
minimization of energy argument suggests that the spin field �

i

is oriented
in the x, y plane and rotates as we move in the z direction. In other words,
a cholesteric structure appears in the ground state
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Figure 1: b = 1, c = 1.25, � = 8. Vacuum energy dependence on ⌘̃ for
�(c � 1) > bc, the solid line corresponds to vacuum II, the dashed line to
vacuum I and the dotted line to vacuum III.

We can see from (23) that the vacuum energy of I is greater than the vacuum
energy of II in all cases, and is thus never a minimizing solution. In this
case we can see from (24) that the minimizing vacuum is II when

⌘̃2 < ⌘̃2
crit3

=

p

(c� 1)bc� � b

(c� 1)
. (31)

Additionally, when the critical point ⌘̃2
crit3

exists, there is a first order tran-
sition from vacuum II to vacuum III at that critical point. If however,

(c� 1)c� < b, (32)

then ⌘̃2
crit3

is non-existent, and vacuum III is the only true vacuum for all
⌘̃2. The vacuum energy for the case bc > �(c� 1) is shown in Figure 2.

Corresponding to the breaking of translational invariance in the vacuum
I there exists a Goldstone mode related to spatially dependent phase shifts
of the cholesteric structure. In general, the cholesteric phase breaks all four
of the generators of the global translational and rotational generators p

z

and
~J while still preserving the linear combination kJ

z

� p
z

. Thus, we expect a
Goldstone mode associated to the broken translational symmetry in the z
direction. Namely if

~✏(z) ! ~✏(x, y, z) =
�

cos (kz � k⇠(x, y, z)) , sin (kz � k⇠(x, y, z)) , 0
 

, (33)
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Figure 3: Geometric set-up of the problem. The vortex axis, in the z di-
rection, is parallel to the wave-vector ~k which is normal to the cholesteric
planes.

will discuss only one type in detail. In vacua I and II, the accumulation of
the field � in the vortex core can be considered as a response to the e↵ective
potential emerging from the topological vortex in �. In these cases, the field
� does not carry a topological charge of its own. These vortices will be the
focus of our attention.

In contrast, one could also consider a winding of the SO(3)
S+L

global
symmetry by giving �

i

a ✓ dependence at large distances from the vortex
axis. This type of vortex is typically called a spin vortex and arises in models
of superfluid 3He [10]. Although, the SO(3) charged vortices in this model
present an interesting avenue, we will not discuss them further here.

5.1 U(1) topological vortices

In the search of the vortex solution we will switch to polar coordinates.
Note that finding a vortex in the cholesteric vacuum is a nontrivial numerical
problem. We will limit ourselves to the simplest case: the vortex axis parallel
to the z axis (or, which is the same, coinciding with ~k). The geometry of
our problem is illustrated in Figure 3.
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(a) �r, at kz = 0.
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(b) �r at kz = ⇡/6.

-5 0 5

-5

0

5

(c) �r at kz = ⇡/3.
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Figure 4: The graphs in a) b) and c) show the �r profiles as contour plots
at kz = 0, ⇡/6, and ⇡/3 respectively for ⌘ = 2.2. The three plots indicate
that the �r profile twists with pitch ⌘/2. This is also true of the other
components �✓ and �z.
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