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Dark Sector Science
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What new particles and forces comprise 
dark matter?

Where did dark matter come from? 



Dark Sector Science: 
Starting Points

• Hierarchy problem and weak-scale physics 
• Motivates new physics near the weak: dark matter could be part 

of this 
• Broad vicinity of weak-scale is already known to be interesting 

— familiar matter resides here!   

A natural first guess is that dark matter is part of the 
solution to an existing Standard Model puzzle

• Strong CP, neutrino masses, baryon asymmetry…etc 

For me, this is the most compelling mass scale to understand and 
explore, with WIMPs as the canonical weak-scale dark matter candidate



WIMPs and a Thermal Origin?

As Universe cools below DM 
mass, density decreases as e-m/T

Dark Matter interacts 
with SM to stay in 
equilibrium…

Eventually dark matter 
particles can’t find each other 

to annihilate

and a (minimal) DM 
abundance is left over to the 

present day
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Larger cross-section 
⇒ later freeze-out
⇒ lower density

Correct DM density for:

Thermal origin suggests Dark Sector interactions 
and mass in the vicinity of the weak-scale 

WIMPs and a Thermal Origin?
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The WIMP Search Effort

Powerful sensitivity over broad range of mass!
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Compelled to Move Beyond WIMPs

Basic weak-scale DM scenarios have been 
significantly constrained by the LHC, direct & 

indirect detection

Existing experimental program will corner 
remaining WIMP models over the next few years

What are we missing? 



First Steps Beyond WIMPs

Thermal origin is a simple and compelling idea for 
the origin of dark matter

Vicinity of the weak-scale remains well-motivated

No need to toss out all of the nice and simple 
features of WIMPs

•Thermal Origin
•Standard Model-like Mass
•Standard Model forces
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First Steps Beyond WIMPs

“WIMP-like” dark matter, just not charged under 
SU(2) weak. Interacts via some other mediator — 

hidden (or dark) sector dark matter!

What are the options?

•Thermal Origin
•Standard Model-like Mass
•Standard Model-like forces



Vector Mixing Very weakly coupled forces

Higgs Mixing exotic rare Higgs decays
rare meson decays

Neutrino Mixing not-so-sterile neutrinos 

Only three sizeable (i.e. not mass suppressed) interactions 
allowed by Standard Model symmetries: 

Three Interaction Types

�h |h|2|⇥|2

�⌫ (hL)⇥

1
2�Y FY

µ�F
0µ�
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Least constrained 
for thermal dark matter

All of these can be generated at  a radiative level, so it’s 
natural for these to be small...



Dark Sectors and Thermal Freeze-out 

 Thermal DM

Dark/Hidden sector

WIMP

MeV GeV TeV

Interaction provides natural freeze-out channel into 
Standard Model final states

Thermal origin “dark sector” dark matter (with mediator) 
is viable over the entire MeV-TeV range!
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Dark Sectors in the Vicinity of the Weak Scale
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For decades: look here!
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Generic mass scale for 
matter with O(1) coupling 
to origin of EWSB



Generic mass scale for 
matter with O(1) coupling 
to origin of EWSB
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...but where do we expect 
hidden sector matter – with 
only small couplings to SM 
matter (generated radiatively)?

For decades: look here!

Dark Sectors in the Vicinity of the Weak Scale
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Where do we expect hidden-
sector matter?

Generic mass scale for 
matter with O(1) coupling 
to origin of EWSB

small #⇥MW

(e.g. dark sector scalar 
mixing with SM higgs)

Dark Sectors in the Vicinity of the Weak Scale
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Generic mass scale for 
matter with O(1) coupling 
to origin of EWSB

Where do we expect hidden-
sector matter?

(e.g. “hidden valley” 
scenario: ~conformal 
to weak scale, then 
confining)

Dark Sectors in the Vicinity of the Weak Scale
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Generic mass scale for 
matter with O(1) coupling 
to origin of EWSB

⇠ MW ⇥ e�#

small #⇥MW

Expect hidden sector matter 
in the vicinity of – but naturally 
below – weak scale

Moving beyond WIMPs, the broad vicinity of 
the weak scale is still an excellent place to 
focus on:

• An important scale!

• Familiar stable matter resides here!

• Thermal DM works well here!

Dark Sectors in the Vicinity of the Weak Scale



FIG. 3: Schematic illustration of the complementarity of di↵erent types of experiments in exploring
sharp targets and general regions of interest for hidden-sector DM. Anomalies in data (see Section
III B 5) highlight regions of interest in mediator mass and/or coupling to visible or dark matter; the
red arrows highlight the suggested regions of mediator mass. Blue horizontal arrows for production
mechanisms (see Sections III B 2-III B 4) indicate the parameter regions over which they are viable
(dashed), regions in which they motivate a sharp parameter-space target (solid arrow), and, in
the case of asymmetric DM, a “natural” range where the DM and baryon number densities are
comparable (thick band). Blue and red vertical arrows highlight directions in “theory space” that
have significant impact on detection strategies, while the green vertical arrows indicate the models
to which di↵erent experimental approaches are most sensitive. Direct detection is discussed in
Section IV, accelerator-based experiments in Section VI, and cosmology and nuclear and atomic
physics probes in Section VII.

represents a precise target of interest. For elastically scattering scalar DM charged under a
new force, most of the sub-GeV parameter space for this scenario can be explored by the
next generation of both accelerator and direct detection experiments. If instead the DM is
axially coupled (as a Majorana fermion must be) or scatters inelastically, then direct detec-
tion rates are suppressed by anywhere from 6 to 18 orders of magnitude, while accelerator
production rates are within one to two decades. Therefore, while both techniques can ex-
plore this possibility, only accelerators are able to do so robustly. The converse is true if
the mediator of DM-SM scattering is much lighter than the DM itself. In this case, direct
detection rates are parametrically enhanced by up to 12 orders of magnitude, because of
their low momentum transfer. This opens the possibility of testing the idea that the DM
abundance “freezes in” through DM and SM interactions with a very light mediator, which
would be too weakly coupled to be seen at accelerators.
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US Cosmic Visions: New Ideas in Dark Matter 2017 :
Community Report

Marco Battaglieri (SAC co-chair),1 Alberto Belloni (Coordinator),2 Aaron Chou (WG2
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Rouven Essig (WG1 Convener),6 Juan Estrada (WG1 Convener),3 Jonathan L. Feng
(WG4 Convener),7 Brenna Flaugher (Coordinator),3 Patrick J. Fox (WG4 Convener),3

Peter Graham (WG2 Convener),8 Carter Hall (Coordinator),2 Roni Harnik (SAC
member),3 JoAnne Hewett (Coordinator),9, 8 Joseph Incandela (Coordinator),10 Eder
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Workshop and Community Report:

arXiv: 1707.04591 

Light hidden-sector dark matter  
a key area of focus

SIMPs	/	ELDERS	

Ultralight	Dark	Ma5er	

Muon	g-2

Small-Scale	Structure	

Microlensing	

Dark	Sector	Candidates,	Anomalies,	and	Search	Techniques	

Hidden	Sector	Dark	Ma5er	

Small	Experiments:	Coherent	Field	Searches,	Direct	DetecIon,	Nuclear	and	Atomic	Physics,	Accelerators	

GeV	 TeV	keV	eV	neV	feV	zeV	 MeV	aeV	 peV	 µeV	 meV	 PeV	 30M�	

WIMPs	QCD	Axion	

≈

GeV	 TeV	keV	eV	neV	feV	zeV	 MeV	aeV	 peV	 µeV	 meV	 PeV	 30M�	

≈

Beryllium-8	

Black	Holes	

Hidden	Thermal	Relics	/	WIMPless	DM	

Asymmetric	DM	

Freeze-In	DM	

Pre-InflaIonary	Axion	

Post-InflaIonary	Axion	

FIG. 1: Mass ranges for dark matter and mediator particle candidates, experimental anomalies,
and search techniques described in this document. All mass ranges are merely representative; for
details, see the text. The QCD axion mass upper bound is set by supernova constraints, and
may be significantly raised by astrophysical uncertainties. Axion-like dark matter may also have
lower masses than depicted. Ultralight Dark Matter and Hidden Sector Dark Matter are broad
frameworks. Mass ranges corresponding to various production mechanisms within each framework
are shown and are discussed in Sec. II. The Beryllium-8, muon (g � 2), and small-scale structure
anomalies are described in VII. The search techniques of Coherent Field Searches, Direct Detection,
and Accelerators are described in Secs. V, IV, and VI, respectively, and Nuclear and Atomic Physics
and Microlensing searches are described in Sec. VII.

II. SCIENCE CASE FOR A PROGRAM OF SMALL EXPERIMENTS

Given the wide range of possible dark matter candidates, it is useful to focus the search
for dark matter by putting it in the context of what is known about our cosmological history
and the interactions of the Standard Model, by posing questions like: What is the (particle
physics) origin of the dark matter particles’ mass? What is the (cosmological) origin of
the abundance of dark matter seen today? How do dark matter particles interact, both
with one another and with the constituents of familiar matter? And what other observable
consequences might we expect from this physics, in addition to the existence of dark matter?
Might existing observations or theoretical puzzles be closely tied to the physics of dark
matter? These questions have many possible answers — indeed, this is one reason why
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Defining New Frontiers
Over the last few years, a strong science case for moving 
beyond WIMPs has been established
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A New Frontier

Extend sensitivity to “WIMP-like” Dark Matter in 
the sub-GeV Range?    (light dark matter, LDM)

Need experiments that can explore the MeV-GeV “WIMP”-like 
scenarios, analogous to the Direct Detection, LEP, and LHC 
efforts to test WIMPs in the GeV-TeV range.  

What are the experimental ingredients of a robust 
effort?

Look to the 30-yr WIMP effort for lessons. 
Many similarities and a few critical differences…
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WIMP & Thermal LDM Experimental Effort:  
 Phenomenology Similarities

+ other modes
✏

Experimental strategies similar to WIMP program, but new challenges 
and opportunities arise from the lower mass scales
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Thermal LDM Models
Low-energy phenomenology depends on

•DM spin (fermion or scalar)
•Mass structure (U(1)D–preserving, U(1)D–breaking, or both)

Dark Matter CurrentParticle Type Different Low-Energy Phenomenology!

Like sneutrino or Dirac neutrino WIMP

Like neutralino WIMP

charged, elastic axially coupled
elastic

inelastic



Dark-Matter-Electron 
Scattering

✦Use the abundance 
and higher charge of dark 
matter particles to your 
advantage!


✦Dark matter transfers more kinetic 
energy when it scatters off light electron 
vs. heavy nucleus* 


✦Challenge: electron  
recoils are usually the 
background for 
direct detection!
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e–

Tongyan	Lin	

Lighter	nuclei	

*Exciting ideas for low-threshold nuclear detection too!



Dark-Matter-Electron 
Scattering

27

New dedicated experiments aim to see 
electron recoils at lower energy than 
typical backgrounds (radiogenic, etc)


e.g. SENSEI: 

1–100g detector made from low-noise 
skipper CCDs
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Dark-Matter-Electron 
Scattering: Limitations
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•Small DM-SM coupling 

•Velocity-suppression 

Dark matter halo is 
non-relativistic!  
(10–3 c) ⇒

Xsec predictions 
spread over tens of 
decades, much like 
for WIMPs!



Dark-Matter Production I
✦Remedy: make relativistic dark matter!  In 

fact, there are already powerful constraints on 
such production from experiments >30 years 
ago


✦Similarly, accelerator neutrino experiments are 
also Dark Matter factories 29
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FIG. 1. Top: Layout of the E137 experiment (adapted from
Fig. 2 in [35]). Middle and Bottom: An electron beam hits an
aluminum target, creating DM particles � via bremsstrahlung
of A0

(bottom left). The � traverse a ⇠ 179 m deep hill and
another ⇠ 204 m-long open region before scattering o↵ elec-
trons (bottom right), which are detected in an electromagnetic
shower calorimeter.

can detect charged particles or photons produced by the
hypothetical particles coming from the dump. The de-
tector also employed multiwire proportional chambers to
achieve superb angular resolution, rendering it sensitive
to directional information that was crucial in eliminating
(cosmic) background. Two experimental runs were per-
formed. The lateral dimensions of the detector were 2m
⇥ 3m during Run 1 and 3m ⇥ 3m in Run 2. The number
of electrons on target was ⇠ 10 C (⇠ 20 C) in Run 1
(Run 2).

The original analysis in [35] searched for axion-like
particles decaying to e

+
e

�, or photinos decaying to a
photon and gravitino. No events were observed that
passed quality cuts, pointed back to the dump, and had a
shower energy above 1 GeV, placing strong limits on ax-
ions/photinos. In [40], the results were used to set strong
constraints on the visible decay A

0 ! e

+
e

�.

Here, we will use the E137 results to set strong con-
straints on sub-GeV DM, �, see Fig. 1 (middle and bot-

tom). We focus on scenarios where �’s are produced from
an on-shell A

0 that decays invisibly to ��̄ or via an o↵-
shell A

0. Such � inherit a significant portion of the beam
energy and travel in the extreme-forward direction; an
O(1) fraction of the produced � thus intersect the E137

detector and can scatter with electrons in the calorimeter
material. The ejected electrons will initiate an energetic
electromagnetic shower of the type constrained by the
E137 search. With no observed events, and conserva-
tively assuming no expected background events, we em-
ploy a Poisson 95% C.L. limit of N95 = 3 events. Below,
we shall calculate the number of signal events for a fixed
m

�

as function of m

A

0 , ✏, and ↵

D

, and derive bounds in
this parameter space by requiring less than 3 events.
SIGNAL RATE CALCULATION. We
have employed a Monte-Carlo simulation using
MadGraph5 aMC@NLO v2.1.1 [41] to generate DM
events produced in electron-aluminum nucleus collisions,
e

�
N ! e

�
NA

0(⇤) ! e

�
N��̄ (where N is a nucleus with

Z = 13, A = 27), and to calculate the total DM pro-
duction cross section, �

��̄

(we checked all our numerical
results against analytic formulas [18, 40, 42]). We include
the form factor of the aluminum nucleus [40, 42], which
accounts for coherent scattering, as well as nuclear and
atomic screening. The model (1) is implemented using
FeynRules 2.0 [43]. We take the thickness of the target
to be one radiation length, a reasonable approximation
that accounts for beam degradation [18, 40]. The total
number of � produced is then

N

�

= 2�

��̄

N

e

XAl NA

/AAl , (2)

where N

e

= 30 C, XAl = 24.3 g cm�2, N

A

is Avogadro’s
number, and AAl = 26.98 g/mol.

The fraction of � that intersect the detector, ✏acc, is
obtained from the Monte-Carlo simulation (and cross-
checked analytically) by selecting � that are produced
with angles tan ✓

x

< �x/L and tan ✓

y

< �y/L trans-
verse to the beam direction, where L = 383 m, �x =
1.5 m, and �y = 1 m (1.5 m) for Run 1 (2). The an-
gular distribution of scalars � produced through an A

0 is
suppressed along the forward direction, which results in
a lower ✏acc compared to fermionic � [14, 18]. We then
take the energy distribution of the DM particles cross-
ing the detector, (1/N

acc
�

)(dN
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�

/dE

�

), and convolute it
with the � � e

� di↵erential scattering cross section,
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where the subscripts f, s stand for fermion and scalar
�, respectively, f

f
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, and E

e

is the recoil electron energy.
To conform to the E137 signal region, we impose E

e

>

Eth = 1 GeV and ✓

e

> 30 mrad, where ✓

e

is the angle
of the scattered electron, to obtain �

cut
�e

. The number of
expected signal events is then given by

N

�e

= N

�

✏acc �

cut
�e

X

i

ndet,i Ldet,i , (4)

where ndet,i (Ldet,i) denotes the e

� number density
(length) of detector sub-layer i. To pass the trigger, �
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FIG. 1. Top: Layout of the E137 experiment (adapted from
Fig. 2 in [35]). Middle and Bottom: An electron beam hits an
aluminum target, creating DM particles � via bremsstrahlung
of A0

(bottom left). The � traverse a ⇠ 179 m deep hill and
another ⇠ 204 m-long open region before scattering o↵ elec-
trons (bottom right), which are detected in an electromagnetic
shower calorimeter.

can detect charged particles or photons produced by the
hypothetical particles coming from the dump. The de-
tector also employed multiwire proportional chambers to
achieve superb angular resolution, rendering it sensitive
to directional information that was crucial in eliminating
(cosmic) background. Two experimental runs were per-
formed. The lateral dimensions of the detector were 2m
⇥ 3m during Run 1 and 3m ⇥ 3m in Run 2. The number
of electrons on target was ⇠ 10 C (⇠ 20 C) in Run 1
(Run 2).

The original analysis in [35] searched for axion-like
particles decaying to e
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�, or photinos decaying to a
photon and gravitino. No events were observed that
passed quality cuts, pointed back to the dump, and had a
shower energy above 1 GeV, placing strong limits on ax-
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constraints on the visible decay A
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0. Such � inherit a significant portion of the beam
energy and travel in the extreme-forward direction; an
O(1) fraction of the produced � thus intersect the E137

detector and can scatter with electrons in the calorimeter
material. The ejected electrons will initiate an energetic
electromagnetic shower of the type constrained by the
E137 search. With no observed events, and conserva-
tively assuming no expected background events, we em-
ploy a Poisson 95% C.L. limit of N95 = 3 events. Below,
we shall calculate the number of signal events for a fixed
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as function of m

A

0 , ✏, and ↵

D

, and derive bounds in
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have employed a Monte-Carlo simulation using
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events produced in electron-aluminum nucleus collisions,
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(we checked all our numerical
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the form factor of the aluminum nucleus [40, 42], which
accounts for coherent scattering, as well as nuclear and
atomic screening. The model (1) is implemented using
FeynRules 2.0 [43]. We take the thickness of the target
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FIG. 1. Top: Layout of the E137 experiment (adapted from
Fig. 2 in [35]). Middle and Bottom: An electron beam hits an
aluminum target, creating DM particles � via bremsstrahlung
of A0

(bottom left). The � traverse a ⇠ 179 m deep hill and
another ⇠ 204 m-long open region before scattering o↵ elec-
trons (bottom right), which are detected in an electromagnetic
shower calorimeter.

can detect charged particles or photons produced by the
hypothetical particles coming from the dump. The de-
tector also employed multiwire proportional chambers to
achieve superb angular resolution, rendering it sensitive
to directional information that was crucial in eliminating
(cosmic) background. Two experimental runs were per-
formed. The lateral dimensions of the detector were 2m
⇥ 3m during Run 1 and 3m ⇥ 3m in Run 2. The number
of electrons on target was ⇠ 10 C (⇠ 20 C) in Run 1
(Run 2).

The original analysis in [35] searched for axion-like
particles decaying to e

+
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�, or photinos decaying to a
photon and gravitino. No events were observed that
passed quality cuts, pointed back to the dump, and had a
shower energy above 1 GeV, placing strong limits on ax-
ions/photinos. In [40], the results were used to set strong
constraints on the visible decay A

0 ! e

+
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�.
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achieve superb angular resolution, rendering it sensitive
to directional information that was crucial in eliminating
(cosmic) background. Two experimental runs were per-
formed. The lateral dimensions of the detector were 2m
⇥ 3m during Run 1 and 3m ⇥ 3m in Run 2. The number
of electrons on target was ⇠ 10 C (⇠ 20 C) in Run 1
(Run 2).
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�, or photinos decaying to a
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passed quality cuts, pointed back to the dump, and had a
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material. The ejected electrons will initiate an energetic
electromagnetic shower of the type constrained by the
E137 search. With no observed events, and conserva-
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ploy a Poisson 95% C.L. limit of N95 = 3 events. Below,
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the form factor of the aluminum nucleus [40, 42], which
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II. VECTOR PORTAL LIGHT DARK MATTER

Hidden sectors with MeV–GeV light DM are a simple,
natural, and widely considered extension of the Standard
Model. Such sectors remain weakly constrained experi-
mentally, though they have been studied in many con-
texts – for example to address anomalies in dark mat-
ter direct and indirect detection [62–66], resolve puz-
zles in simulations of structure formation [67, 68], mod-
ify the number of relativistic species in the early uni-
verse [69, 70], explain the “cosmological coincidence”
between dark and visible energy-densities [17, 18], re-
solve the proton charge radius and other SM anomalies
[71–75], and explore novel hidden-sector phenomenology
[25, 64, 69, 76–97].

The elaborate parameter space for this large class of
theories motivates a simplified-model approach for char-
acterizing experimental bounds and projecting the sensi-
tivities of future searches. To be concrete, we consider a
simple dark sector consisting of a Dirac fermion DM par-
ticle � with unit charge under a spontaneously broken
abelian gauge group U(1)

D

. The most general renormal-
izable Lagrangian for this scenario contains

L
D

� ✏
Y

2
F 0
µ⌫

B
µ⌫

+
m2

A

0

2
A0

µ

A0µ + �̄(i 6D �m
�

)�, (2)

where A0 is the U(1)
D

gauge boson, F 0
µ⌫

= @[µ,A
0
⌫]

and B
µ⌫

= @[µ,B⌫] are the dark and hypercharge field
strength tensors, and m

�,A

0 are the appropriate dark
sector masses. The covariant derivative D

µ

⌘ @
µ

+
ig

D

A0
µ

contains the coupling constant g
D

, and we define
↵
D

⌘ g2
D

/4⇡ in analogy with electromagnetism. The A0-
hypercharge kinetic mixing parameter ✏

Y

is expected to
be small (✏ ⌧ 1) because it most-naturally arises at loop
level if any particles in nature carry charges under both
U(1)

Y

and U(1)
D

.
After electroweak symmetry breaking, the hypercharge

field is B
µ

= cos ✓
W

A
µ

� sin ✓
W

Z
µ

in the mass eigenba-
sis, so the kinetic mixing between dark and visible pho-
tons becomes ✏

2F
0
µ⌫

F
µ⌫

, where ✏ ⌘ ✏
Y

cos ✓
W

and ✓
W

is the weak mixing angle. Diagonalizing the A,A0 field
strengths, thus, gives all charged SM particles U(1)

D

mil-
licharges proportional to ✏e; any photon in a QED Feyn-
man diagram can be replaced with an A0, with its cou-
pling to SM states rescaled by ✏. This simplified model
serves as a useful avatar for a generic dark sector be-
cause its parameter space can easily be reinterpreted to
constrain many other, more elaborate scenarios.

Beyond its role as a convenient parametrization for
more general sectors, this scenario is also a self-contained,
renormalizable theory of dark matter. If the DM is
particle-antiparticle symmetric and m

A

0 > m
�

, the relic
density is set by ��̄ annihilation to SM final states, which
yields the observed abundance for

✏2 ' 1.3 ⇥ 10�8
⇣ m

A

0

10 MeV

⌘4
✓

MeV

m
�

◆2 ✓10�2

↵
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◆
. (3)
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FIG. 3: Radiative production of an A0 in a coherent electron-
nucleus collision followed by a prompt decay to dark sector
invisible states A0 ! �̄�. Production of �̄� can also proceed
through an o↵-shell A0 with an extra surpression of ↵D/⇡.

The mass hierarchy m
A

0 > m
�

and resulting dominant
��̄ ! e+e� annihilation channel allow this scenario to
remain compatible with CMB constraints (see below)1.
Larger values of ✏ yield ⌦

�

< ⌦
DM

, so � can still be a
subdominant fraction of the dark sector, but smaller val-
ues overclose the universe if � was ever in thermal equi-
librium with the visible sector, so this places a generic
constraint on the parameter space. Indeed, even if the
initial � population is matter-asymmetric, the annihila-
tion rate must still exceed the thermal-relic value to erase
the matter-symmetric ��̄ population. The lowest black
curve in Fig. 6 is the region for which which a thermal
relic � constitutes all of the dark matter for m

A

0 = 3m
�

and ↵
D

= 1. For lower ↵
D

or a greater m
A

0/m
�

ra-
tio, the relic density curve moves upward on the plot, so
experimentally probing down to this diagonal su�ces to
cover the entire parameter space for which the DM-SM
coupling is appreciable enough to keep the � relic density
below ⌦

DM

. The condition for � to thermalize with the
radiation in the early universe is,

✏2 ⇠ T 2H(T )

↵↵
D

n
e

(T )

����
T=2m�

⇠> 2.1 ⇥ 10�17
⇣ m

�

10 MeV

⌘✓ 0.1

↵
D

◆
, (4)

assuming m
A

0 ⇠ m
�

. The parameter space along the
relic density curve in Fig. 6 (black, solid) trivially satis-
fies this requirement over the full MeV-GeV range, so �
will have a thermal abundance in the early universe, and
the only viable parameter space is above the relic density
curve.

Beam-Dump Constraints
The parameter space for an invisibly decaying A0 in the
MeV-GeV mass range is constrained by various electron
and proton beam dump experiments. The strongest con-
straint over most of this range comes from the LSND

1 If mA0 < m�, the dominant annihilation channel is �̄� ! A0A0,
which is not suppressed by ✏, is more readily constrained by late
time CMB measurements, and easily leads to thermal underpro-
duction in the early universe unless ↵D ⌧ ↵. In this region of
parameter space, A0 decays visibly and doesn’t contribute to the
observables considered in this paper.
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, so � can still be a
subdominant fraction of the dark sector, but smaller val-
ues overclose the universe if � was ever in thermal equi-
librium with the visible sector, so this places a generic
constraint on the parameter space. Indeed, even if the
initial � population is matter-asymmetric, the annihila-
tion rate must still exceed the thermal-relic value to erase
the matter-symmetric ��̄ population. The lowest black
curve in Fig. 6 is the region for which which a thermal
relic � constitutes all of the dark matter for m
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the only viable parameter space is above the relic density
curve.

Beam-Dump Constraints
The parameter space for an invisibly decaying A0 in the
MeV-GeV mass range is constrained by various electron
and proton beam dump experiments. The strongest con-
straint over most of this range comes from the LSND

1 If mA0 < m�, the dominant annihilation channel is �̄� ! A0A0,
which is not suppressed by ✏, is more readily constrained by late
time CMB measurements, and easily leads to thermal underpro-
duction in the early universe unless ↵D ⌧ ↵. In this region of
parameter space, A0 decays visibly and doesn’t contribute to the
observables considered in this paper.
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II. VECTOR PORTAL LIGHT DARK MATTER

Hidden sectors with MeV–GeV light DM are a simple,
natural, and widely considered extension of the Standard
Model. Such sectors remain weakly constrained experi-
mentally, though they have been studied in many con-
texts – for example to address anomalies in dark mat-
ter direct and indirect detection [62–66], resolve puz-
zles in simulations of structure formation [67, 68], mod-
ify the number of relativistic species in the early uni-
verse [69, 70], explain the “cosmological coincidence”
between dark and visible energy-densities [17, 18], re-
solve the proton charge radius and other SM anomalies
[71–75], and explore novel hidden-sector phenomenology
[25, 64, 69, 76–97].

The elaborate parameter space for this large class of
theories motivates a simplified-model approach for char-
acterizing experimental bounds and projecting the sensi-
tivities of future searches. To be concrete, we consider a
simple dark sector consisting of a Dirac fermion DM par-
ticle � with unit charge under a spontaneously broken
abelian gauge group U(1)

D

. The most general renormal-
izable Lagrangian for this scenario contains

L
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where A0 is the U(1)
D

gauge boson, F 0
µ⌫

= @[µ,A
0
⌫]

and B
µ⌫

= @[µ,B⌫] are the dark and hypercharge field
strength tensors, and m
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0 are the appropriate dark
sector masses. The covariant derivative D
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⌘ @
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+
ig
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contains the coupling constant g
D

, and we define
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⌘ g2
D

/4⇡ in analogy with electromagnetism. The A0-
hypercharge kinetic mixing parameter ✏

Y

is expected to
be small (✏ ⌧ 1) because it most-naturally arises at loop
level if any particles in nature carry charges under both
U(1)

Y

and U(1)
D

.
After electroweak symmetry breaking, the hypercharge

field is B
µ

= cos ✓
W

A
µ

� sin ✓
W

Z
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in the mass eigenba-
sis, so the kinetic mixing between dark and visible pho-
tons becomes ✏

2F
0
µ⌫

F
µ⌫

, where ✏ ⌘ ✏
Y

cos ✓
W

and ✓
W

is the weak mixing angle. Diagonalizing the A,A0 field
strengths, thus, gives all charged SM particles U(1)

D

mil-
licharges proportional to ✏e; any photon in a QED Feyn-
man diagram can be replaced with an A0, with its cou-
pling to SM states rescaled by ✏. This simplified model
serves as a useful avatar for a generic dark sector be-
cause its parameter space can easily be reinterpreted to
constrain many other, more elaborate scenarios.

Beyond its role as a convenient parametrization for
more general sectors, this scenario is also a self-contained,
renormalizable theory of dark matter. If the DM is
particle-antiparticle symmetric and m

A

0 > m
�

, the relic
density is set by ��̄ annihilation to SM final states, which
yields the observed abundance for
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FIG. 3: Radiative production of an A0 in a coherent electron-
nucleus collision followed by a prompt decay to dark sector
invisible states A0 ! �̄�. Production of �̄� can also proceed
through an o↵-shell A0 with an extra surpression of ↵D/⇡.

The mass hierarchy m
A

0 > m
�

and resulting dominant
��̄ ! e+e� annihilation channel allow this scenario to
remain compatible with CMB constraints (see below)1.
Larger values of ✏ yield ⌦

�

< ⌦
DM

, so � can still be a
subdominant fraction of the dark sector, but smaller val-
ues overclose the universe if � was ever in thermal equi-
librium with the visible sector, so this places a generic
constraint on the parameter space. Indeed, even if the
initial � population is matter-asymmetric, the annihila-
tion rate must still exceed the thermal-relic value to erase
the matter-symmetric ��̄ population. The lowest black
curve in Fig. 6 is the region for which which a thermal
relic � constitutes all of the dark matter for m

A

0 = 3m
�

and ↵
D

= 1. For lower ↵
D

or a greater m
A

0/m
�

ra-
tio, the relic density curve moves upward on the plot, so
experimentally probing down to this diagonal su�ces to
cover the entire parameter space for which the DM-SM
coupling is appreciable enough to keep the � relic density
below ⌦

DM

. The condition for � to thermalize with the
radiation in the early universe is,
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assuming m
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0 ⇠ m
�

. The parameter space along the
relic density curve in Fig. 6 (black, solid) trivially satis-
fies this requirement over the full MeV-GeV range, so �
will have a thermal abundance in the early universe, and
the only viable parameter space is above the relic density
curve.

Beam-Dump Constraints
The parameter space for an invisibly decaying A0 in the
MeV-GeV mass range is constrained by various electron
and proton beam dump experiments. The strongest con-
straint over most of this range comes from the LSND

1 If mA0 < m�, the dominant annihilation channel is �̄� ! A0A0,
which is not suppressed by ✏, is more readily constrained by late
time CMB measurements, and easily leads to thermal underpro-
duction in the early universe unless ↵D ⌧ ↵. In this region of
parameter space, A0 decays visibly and doesn’t contribute to the
observables considered in this paper.
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parameter space, A0 decays visibly and doesn’t contribute to the
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parameter space, A0 decays visibly and doesn’t contribute to the
observables considered in this paper.
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natural, and widely considered extension of the Standard
Model. Such sectors remain weakly constrained experi-
mentally, though they have been studied in many con-
texts – for example to address anomalies in dark mat-
ter direct and indirect detection [62–66], resolve puz-
zles in simulations of structure formation [67, 68], mod-
ify the number of relativistic species in the early uni-
verse [69, 70], explain the “cosmological coincidence”
between dark and visible energy-densities [17, 18], re-
solve the proton charge radius and other SM anomalies
[71–75], and explore novel hidden-sector phenomenology
[25, 64, 69, 76–97].

The elaborate parameter space for this large class of
theories motivates a simplified-model approach for char-
acterizing experimental bounds and projecting the sensi-
tivities of future searches. To be concrete, we consider a
simple dark sector consisting of a Dirac fermion DM par-
ticle � with unit charge under a spontaneously broken
abelian gauge group U(1)
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Beyond its role as a convenient parametrization for
more general sectors, this scenario is also a self-contained,
renormalizable theory of dark matter. If the DM is
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Beam-Dump Constraints
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MeV-GeV mass range is constrained by various electron
and proton beam dump experiments. The strongest con-
straint over most of this range comes from the LSND
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which is not suppressed by ✏, is more readily constrained by late
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licharges proportional to ✏e; any photon in a QED Feyn-
man diagram can be replaced with an A0, with its cou-
pling to SM states rescaled by ✏. This simplified model
serves as a useful avatar for a generic dark sector be-
cause its parameter space can easily be reinterpreted to
constrain many other, more elaborate scenarios.

Beyond its role as a convenient parametrization for
more general sectors, this scenario is also a self-contained,
renormalizable theory of dark matter. If the DM is
particle-antiparticle symmetric and m
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and resulting dominant
��̄ ! e+e� annihilation channel allow this scenario to
remain compatible with CMB constraints (see below)1.
Larger values of ✏ yield ⌦
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, so � can still be a
subdominant fraction of the dark sector, but smaller val-
ues overclose the universe if � was ever in thermal equi-
librium with the visible sector, so this places a generic
constraint on the parameter space. Indeed, even if the
initial � population is matter-asymmetric, the annihila-
tion rate must still exceed the thermal-relic value to erase
the matter-symmetric ��̄ population. The lowest black
curve in Fig. 6 is the region for which which a thermal
relic � constitutes all of the dark matter for m
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and ↵
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relic density curve in Fig. 6 (black, solid) trivially satis-
fies this requirement over the full MeV-GeV range, so �
will have a thermal abundance in the early universe, and
the only viable parameter space is above the relic density
curve.

Beam-Dump Constraints
The parameter space for an invisibly decaying A0 in the
MeV-GeV mass range is constrained by various electron
and proton beam dump experiments. The strongest con-
straint over most of this range comes from the LSND

1 If mA0 < m�, the dominant annihilation channel is �̄� ! A0A0,
which is not suppressed by ✏, is more readily constrained by late
time CMB measurements, and easily leads to thermal underpro-
duction in the early universe unless ↵D ⌧ ↵. In this region of
parameter space, A0 decays visibly and doesn’t contribute to the
observables considered in this paper.
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The parameter space for an invisibly decaying A0 in the
MeV-GeV mass range is constrained by various electron
and proton beam dump experiments. The strongest con-
straint over most of this range comes from the LSND
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which is not suppressed by ✏, is more readily constrained by late
time CMB measurements, and easily leads to thermal underpro-
duction in the early universe unless ↵D ⌧ ↵. In this region of
parameter space, A0 decays visibly and doesn’t contribute to the
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mentally, though they have been studied in many con-
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constraint on the parameter space. Indeed, even if the
initial � population is matter-asymmetric, the annihila-
tion rate must still exceed the thermal-relic value to erase
the matter-symmetric ��̄ population. The lowest black
curve in Fig. 6 is the region for which which a thermal
relic � constitutes all of the dark matter for m

A

0 = 3m
�

and ↵
D

= 1. For lower ↵
D

or a greater m
A

0/m
�

ra-
tio, the relic density curve moves upward on the plot, so
experimentally probing down to this diagonal su�ces to
cover the entire parameter space for which the DM-SM
coupling is appreciable enough to keep the � relic density
below ⌦

DM

. The condition for � to thermalize with the
radiation in the early universe is,

✏2 ⇠ T 2H(T )

↵↵
D

n
e

(T )

����
T=2m�

⇠> 2.1 ⇥ 10�17
⇣ m

�

10 MeV

⌘✓ 0.1

↵
D

◆
, (4)

assuming m
A

0 ⇠ m
�

. The parameter space along the
relic density curve in Fig. 6 (black, solid) trivially satis-
fies this requirement over the full MeV-GeV range, so �
will have a thermal abundance in the early universe, and
the only viable parameter space is above the relic density
curve.

Beam-Dump Constraints
The parameter space for an invisibly decaying A0 in the
MeV-GeV mass range is constrained by various electron
and proton beam dump experiments. The strongest con-
straint over most of this range comes from the LSND

1 If mA0 < m�, the dominant annihilation channel is �̄� ! A0A0,
which is not suppressed by ✏, is more readily constrained by late
time CMB measurements, and easily leads to thermal underpro-
duction in the early universe unless ↵D ⌧ ↵. In this region of
parameter space, A0 decays visibly and doesn’t contribute to the
observables considered in this paper.

reducible (ECAL+HCAL)
goal: detect every energetic 

photon!

γ
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trivial

Studies are approaching  
1014 events with no background.
Accurate simulation of rare 
processes is the biggest challenge.

Current focus: design  
studies for “Phase I” with  
4 1014 electrons
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LDMX
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Tracker pT Resolutions

Tagger (px, py) resolutions at target are (1.0,1.4) MeV.

Recoil (px, py) resolutions are limited by 4 MeV scattering in 10% X0 target (included here)

p y
 r

es
ol

ut
io

n 
(M

eV
)

recoil |pe| (GeV) recoil |pe| (GeV)

p x
 r

es
ol

ut
io

n 
(M

eV
)

Recoils Recoils

Tracker delivers best possible resolution for pT

36”

vacuum chamber

ECal HCal

target

recoil
tracker

tagging tracker

Data Acquisition

taggin
g trac

ker

recoil

tracker

target

Silicon Sensors

Tracking technology from Heavy Photon SearchHadronic calorimeter technology from CMS upgrade

sam
pling fraction

depth

si
ng

le
 n

eu
tr

on
 r

ej
ec

tio
n 

ra
te

CERN Test Beam Data

CMS upgrade Si-W EM Calorimetry 

Phase I Detector Concept and Collaboration

Phase II may require more granularity and faster detectors 
(for pileup mitigation) + new trigger 

Trigger: Low energy deposition in  
ECAL + hits in scintillator pad near  
target

LDMX
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Trigger 

To reject beam-energy backgrounds

• cut on %E in first 20 ECal layers

• veto on empty target scintillator

Highly efficient at 3×10-4 rejection,  
needed for Phase I DAQ @ 5 kHz

Target w/ Scintillator Pads
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trivial

! e+ hadrons

! e+ µ+µ�

…

Designing for zero background 
without cutting on recoil pT – if 
unexpected events are seen, it serves 
as additional kinematic discriminator 
between signal and inefficient 
background veto
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Targets for Thermal Relic DM

Phase I: 4 1014 @ 4 GeV 
0.1-0.3 X0 target

Phase II: 1016 @ 8 GeV 
0.1-0.3 X0 target

Belle II missing 
mass search –
complementary 
high-mass 
sensitivity

Unique potential to reach all thermal DM milestones 
at masses below ~100 MeV



Conclusions

WIMPs and WIMP-like dark matter near the weak-
scale (MeV-TeV) remains well-motivated and 

important to test

Large scale direct detection continues to define & 
push the boundaries above the GeV mass range

Existing and new small-scale accelerator experiments 
will test a broad range of scenarios below the GeV 

mass range
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Low-current but “continuous” multi-GeV beam needed for 
LDMX can be delivered parasitically!

DASEL  
Beamline

Existing 
A-Line

DASEL Kicker

End Station A

LCLS

— existing LCLS 
— existing ESA 
— DASEL proposal 

SLAC Linac
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Low-current but “continuous” multi-GeV beam needed for 
LDMX can be delivered parasitically!

Laser system to fill “unused” 
buckets with electrons for DASEL 

DASEL Beamline connecting to ESA line 
•  3 dipoles & 14 quads (all refurbished) 

DASEL kicker/septum system 
downstream of FEL kickers to 
eliminate interference 
•  Based on LCLS-II design 

BSY dump 

ESA 

Soft X-Ray FEL 

Hard X-Ray FEL 

Beam Kickers 

LCLS-II SCRF Linac 

FEL and DASEL 
bunches from RF gun 

Experimental Facilities  
•  Small upgrades to ESA systems 

DASEL 

LCLS-II beamlines 

A multi-GeV, CW electron beam  
 parasitic to LCLS-II  


