
GIVING ML A BOOST TOWARDS 
RESPECTING (APPROXIMATE) SYMMETRIES
Bay Area Particle Theory Seminar, Apr 2025

INBAR SAVORAY
UC Berkeley & Lawrence Berkeley National Lab

WITH: PRADYUN HEBBAR, THANDIKIRE MADULA, VINICIUS MIKUNI,  
BENJAMIN NACHMAN & NADAV OUTMEZGUINE



INTRODUCTION



PARTICLE PHYSICS 404 
➤ Despite great theoretical and experimental effort, no evidence 

of New Physics has been found to date.


➤ Many dedicated searches ruled out a significant portion of the 
parameter space of theoretically motivated models.


➤ However, there is still much more to explore:


➤ New theoretical models. 


➤ A lot of data.



MACHINE LEARNING 101

➤ A family of functions - expressive, universal approximators


➤ Architecture - the specific family of functions

Flexible



MACHINE LEARNING 101

➤ A family of functions - expressive, universal approximators


➤ Neural Network (NN) - sequence of linear and non-linear 
functions 

Flexible

Σi = ⃗w i ⋅ ⃗xinput + bi

: non-linear 
activation
σ

input 
(“features”)

hidden layers

output

x y (x)

θNN



MACHINE LEARNING 101

➤ A family of functions - expressive, universal approximators


➤ Transformer ~ sequence of NN + attention (non-linear) 

Flexible
A. Vaswani et al, [1706.03762]



MACHINE LEARNING 101

➤ A family of functions - expressive, universal approximators


➤ Learning - fit to data.


➤ Training - parameters of function found by minimizing 
“loss” calculated on given dataset.

Great with a lot of data

Loss

θML



MACHINE LEARNING 101

➤ A family of functions - expressive, universal approximators


➤ Architecture - the specific family of functions (NN, CNN, 
GNN, transformer, etc.)


➤ Learning - fit to data.


➤ Training - parameters of  
function found by minimizing 
“loss” calculated on given dataset.

Great with a lot of data Flexible

xkcd.com

http://xkcd.com


MORE DATA/PARAMETERS VS. MORE STRUCTURE
➤ Modern ML is “more is more” - 


➤ More data, more parameters, more compute.


➤ Better capabilities, but also better generalization.


➤ Modern ML is less specialized - 


➤ Transformers perform well on a wide range of tasks.


➤ Shift from carefully designing models for specific tasks to 
fine tuning foundational models.

J. Kaplan et al, [2001.08361]
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MORE DATA/PARAMETERS VS. MORE STRUCTURE
➤ On the other hand, more information is also more - especially 

for scientific applications


➤ Data 


➤ Noisy data can “trick” over-parameterized models


➤ Might require more precision than language or images


➤ Theory


➤ Often the underlying truth is “simple” - Ockham’s razor


➤ We have guiding theoretical principles that can be easily 
phrased as clear mathematical/logical statements

Physical~structure
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SYMMETRIES

➤ Symmetries as theoretical input - physical information about 
the system we are trying to describe  
 
 
 
 
 

➤ Ubiquitous in particle physics -  flavor, P/CP, rotations, 
translations…


➤ Often approximate - either theoretically or practically

ϕ (gx ⊙ x) = gϕ ⊙ ϕ (x)

property 
of input 

data

desired 
property 
of output

g ∈ Gsymm
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IMPOSING SYMMETRIES

➤ Symmetric architecture - model can only output functions 
that transform in the correct way by construction. 
 
 
 
 
 

➤ Invariant - 


➤ “Equivariant” -  (covariant)

gϕ = 1

gϕ = gx = g

ϕML (gx ⊙ x) = gϕ ⊙ ϕML (x)

property 
of input 

data

desired 
property 
of output

12

ϕEqui
x

g x
⊙

x

ϕ



IMPOSING LORENTZ INVARIANCE

➤ Symmetric architecture - model can only output functions 
that transform in the correct way by construction.


➤ Lorentz invariance - theoretically exact, space-time 
symmetry, continuous and non-compact.


➤ Systematically build representations

ϕML (gx ⊙ x) = gϕ ⊙ ϕML (x)

J. Spinner, V. Bresó, P. De Hann, T. Plehn, J. Thaler, 
J. Brehmer, [2405.14806]

A. Bogatskiy, T. Hoffman, D. W. Miller, J. T. 
Offermann, X. Liu, [2307.16506]

PELICAN
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CHALLENGES OF EQUIVARIANT MODELS

➤ Equivariant models have shown to improve performance on 
particle physics tasks.


➤ Expressivity could be challenging due to limited “building 
blocks”.


➤ Can be more compute intensive - overhead evaluation time 
and more FLOPs per parameter.


➤ Trainability - less smooth loss surface.

Transformer GATr
A. Elhag, T. Rusch, F. Di Giovanni and M. 

Bronstein, [2410.17878]
J. Spinner, V. Bresó, P. De Hann, T. Plehn, J. 

Thaler, J. Brehmer, [2405.14806]



APPROXIMATE SYMMETRIES
➤ Often physical symmetries are only approximate.


➤ Although Lorentz invariance is exact, it is effectively broken if 
one only transforms the final state momenta


➤ Beam - introduces a preferred direction


➤ Detector - different energy efficiencies and spatial coverage/
sensitivity.


➤ Clustering - algorithm takes into account euclidean 
distances.
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SOFT SYMMETRIES?
➤ We want flexible and easy to train models, that are aware of 

symmetries but can choose how to use that information.


➤ Instead of imposing symmetries, specify a preference towards 
respecting them.

Physical Scalable Flexible

x

g x
⊙

x

ϕ



SYMMLOSS



SYMMLOSS
➤ A symmetry-encouraging term added to the loss



ℒ = ℒtask + λsymmℒsymm

ℒsymm = ∥ϕML (gx ⊙ x) − gϕ ⊙ ϕML (x) ∥2

ϕ(x)

ℒ



SYMMLOSS
➤ A symmetry-encouraging term added to the loss








➤ Relax hard constraints -


➤ Allow for approximate symmetries (and even no 
symmetries at all).


➤ Bias is tunable and controllable.


➤ Flexible - can be added to any model.

ℒ = ℒtask + λsymmℒsymm

ℒsymm = ∥ϕML (gx ⊙ x) − gϕ ⊙ ϕML (x) ∥2

Physical

Scalable Flexible



SYMMLOSS
➤ A symmetry-encouraging term added to the loss








➤  if  is in the desired representation for any group 
element  and any input .   


➤ In practice: 


➤ average over data


➤ Group:

ℒ = ℒtask + λsymmℒsymm

ℒsymm = ∥ϕML (gx ⊙ x) − gϕ ⊙ ϕML (x) ∥2

ℒsymm → 0 ϕ
g x

symm - group sampleG symm - infinitesimalδ



GSYMM
➤ Measure how different the output is on transformed inputs


 

 

➤ sample from the group.


➤ cheap to calculate.

ℒG =
1
N

N

∑
i=1

ϕML (gx
i ⊙ xi) − gϕ

i ⊙ ϕML (xi)
2

Sample gi ∈ G

symm:G



GSYMM - LORENTZ
➤ Measure how different the output is on transformed inputs


 

 

➤ sample from the group.


➤ cheap to calculate.


➤ Lorentz: boost  uniformly sampled  
from a sphere of radius 

ℒG =
1
N

N

∑
i=1

ϕML (Λ ( ⃗βi) ⊙ xi) − gϕ
i ⊙ ϕML (xi)

2

⃗β
βmax

scalar: 


4-vector: 

gϕ
i = 1

gϕ
i = Λ ( ⃗βi)

symm:G

Sample gi ∈ G

⃗β
βmax



SYMMδ

➤ Infinitesimal transformations by generator : 





 

La

δaϕ (x) = ∂xϕ (x) δa ⃗x

ℒδ =
features

∑
j=1

(La
ϕ (ϕ) − La

x xj ⋅ ∂xj
ϕ)

2

gens, data

symm:δ

 in the rep. of xLx

δa ⃗x = La
x ⃗xδaϕ



SYMMδ

➤ Infinitesimal transformations by generator : 





 

➤ Is already approximate.


➤ No need to figure out sampling over group.


➤ On the other hand - computationally more expensive.


La

δaϕ (x) = ∂xϕ (x) δa ⃗x

ℒδ =
features

∑
j=1

(La
ϕ (ϕ) − La

x xj ⋅ ∂xj
ϕ)

2

gens, data

symm:δ

 in the rep. of xLx



SYMM - LORENTZδ

➤ Infinitesimal transformations by generator : 





 

➤ Is already approximate.


➤ No need to figure out sampling over group.


➤ On the other hand - computationally more expensive.


➤ Lorentz: 6 generators: 

La

δaϕ (x) = ∂xϕ (x) δa ⃗x

ℒδ =
features

∑
j=1

(La
ϕ (ϕ) − La

x xj ⋅ ∂xj
ϕ)

2

gens, data

Kx , Ky , Kz , Lx , Ly , Lz

symm:δ

 in the rep. of xLx

scalar: 0


4-vector: Lϕ



EXPERIMENTS & RESULTS



TOY EXPERIMENTS

➤ Input: list of 4-momenta 


➤ NN with 3 hidden layers of width 300, GeLU activation.


➤ Exact Symmetry:  


➤
MSE loss - 

pμ
i

ftruth (pμ
i ) = poly (pi ⋅ pj)

ℒMSE = ∑
i

ftruth (pμ
i ) − ypred (pμ

i )
2

input 

hidden 

output
pμ y (pμ)

θNN

+λsymmℒsymm



Gsymmβmax = 0.95 Gsymmβmax = 0.5

TOYS - EXACT SYMMETRY

➤ Gsymm can achieve better performance 
 than baseline on boosted inputs.


➤ Larger training  - flatter as function of boost, 
 but can under-perform for small boosts.

βmax

ℒG = ϕML (Bi (xi)) − ϕML (xi)
2

ℒ = ℒMSE + λsymmℒG

⃗β
βmax



TOYS - EXACT SYMMETRY

➤ Even infinitesimal loss achieves better performance than 
baseline, and can extend to non-infinitesimal boosts!


➤ symm better at smaller .


➤ Big  doesn’t hurt for small transformations.

δ β

λ

ℒG = ϕML (Bi (xi)) − ϕML (xi)
2

ℒ = ℒMSE + λsymmℒsymm

ℒδ =
∂ϕML

∂pμ
⋅ (Lμνpν

i )
2



TOY EXPERIMENTS

➤ Input: list of 4-momenta 


➤ NN with 3 hidden layers of width 300, GeLU activation.


➤ Exact Symmetry:  


➤ Approximate Symmetry:  


➤ “Spurion” 

pμ
i

ftruth (pμ
i ) = poly (pi ⋅ pj)
ftruth (pμ

i ) = poly (pi ⋅ pj, pi ⋅ s)
s = (0 0 0 10−3)



TOYS - APPROXIMATE SYMMETRY

➤ Gain even when the symmetry is not exact.

symmδ Gsymmβmax = 0.5

ℒG = ϕML (Bi (xi)) − ϕML (xi)
2

ℒδ =
∂ϕML

∂pμ
⋅ (Lμνpν

i )
2

ℒ = ℒMSE + λsymmℒsymm



TOP TAGGING
➤ Physics example - QCD vs. top-jets


➤ Precision measurements


➤ BSM studies 


➤ Goal - learn  vs.  classify jet.p(x | top) p(x |QCD)→
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V. Mikuni, F. Canelli,[2102.05073]



TOP TAGGING - DATASET
➤ ATLAS top tagging dataset 


➤ Most realistic dataset


➤ Full LHC Run-2 conditions (including pile-up)


➤ Full detector simulation


➤ Event reconstruction 

ATLAS collaboration (2022), 
https://opendata.cern.ch/record/15013

https://opendata.cern.ch/record/15013


TOP TAGGING - MODEL

➤ Input - jet constituents 4-momenta


➤ Transformer -
p (x | top)

{pi
T, Ei,

pi
T

p jet
T

,
Ei

Ejet
, Δϕi , Δηi , ΔRi = Δη2 + Δϕ2}
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TOP TAGGING RESULTS
➤ Invariance check - boosting inputs and assigning them with 

the same truth values as original inputs. 


➤ As expected - improved and flatter performance over boosted 
inputs.


➤

symmδ Gsymm

preliminarypreliminary

βmax = 0.95



TOP TAGGING RESULTS
➤ For the real data - performance at least on-par with baseline.

symmδ Gsymmβmax = 0.95symmδ Gsymm

preliminarypreliminary

βmax = 0.95



TOP TAGGING RESULTS
➤ For the real data - performance at least on-par with baseline.


➤ Improved background rejection at signal efficiency of 0.3.

symmδ Gsymm βmax = 0.95

1/
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preliminarypreliminary



TOP TAGGING RESULTS

➤ Extrapolation test: train only on 


➤ Gsymm with  extrapolates best to unseen  !

pT ≤ 2 TeV

βmax = 0.5 pT

preliminary



CONCLUSIONS
➤ ML + physical knowledge help extract more information from data.


➤ Symmetries can be imposed on architecture-level, but can be 
challenging to build and train. 


➤ SymmLoss - bias the model towards respecting symmetries. 

➤ Flexible - can be added to any model, 
 easy to implement.


➤ Multi-purpose - accommodates  
approximate symmetries (and no symmetries).


➤ Bias is tunable and controllable.


➤ Better results for symmetric problems,  
even if the symmetry is broken.

ℒ = ℒtask + λsymmℒsymm



FUTURE WORK
➤ Working on full comparison to PELICAN & L-GATr


➤ Performance - 


➤ combine with SOTA models


➤ Other ideas for broken symmetry losses 


➤ Scaling behavior
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