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What does the literature say?

~25 μeV - string 
radiation is 
subdominant 
to QCD PT 
energy density



10°
12

10°
11

10°
10

10°
9

10°
8

10°
7

10°
6

10°
5

10°
4

10°
3

10°
2

10°
1

100

ma [eV]

10°19

10°18

10°17

10°16

10°15

10°14

10°13

10°12

10°11

10°10

10°9

10°8

|g
ag

|[
G

eV
°

1 ]

KSVZ

DFSZ II

SN
1987A

Solar n

Horizontal branch

A
D

M
X

R
B

F+U
F H

A
Y

STA
C

C
A

PP

O
R

G
A

N

Q
U

A
X

CAST

PVLASALPS-I

OSQAR

CROWS

SN1987A

HESSFermiStar

clu
ste

rs

Neutron stars
SHAFT

ABRA
10 cm

What does the literature say?

more than 500 μeV

- string 
radiation 
dominates
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Why? Two reasons SciPost Phys. 10, 050 (2021)
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Figure 1: The evolution of the string network density ⇠ for different initial conditions, with
statistical error bars. Different initial conditions tend asymptotically to a common attractor
solution. This has an evident logarithmic increase, which would imply ⇠ ⇡ 15 at the phys-
ically relevant log(mr/H) = 60÷ 70. The best fit curves with the ansatz in eq. (3) are also
shown. The initial conditions used for the analysis of the spectrum of axions emitted by the
network are plotted in black.

as 1/ log(mr/H) (see e.g. ref. [21]). It is therefore not surprising that the dynamics of the
string network, and in particular the parameters of the attractor, might depend non trivially
on log(mr/H). This is indeed the case for the parameter ⇠, which was observed to “run” in
ref. [7] (see also refs. [22–27] for further supporting evidence), increasing logarithmically
with time.

The growth of ⇠ is manifest in Fig. 1, which shows ⇠ as a function of log(mr/H). Each
color refers to a set of simulations with different initial string density (initially overdense sim-
ulations show first a drop and then a universal increase). The error bars refer to the statistical
errors.3 Simulations ending before log = 7 are data taken in ref. [7] with grids up to 12503,
and the remainder are new data collected with bigger grids, up to 45003. When we analyze
other properties of the scaling solution we choose the initial conditions that reach the attractor
behavior the earliest, indicated with black data points in Fig. 1.4

Because of the manifest logarithmic increase, the value of ⇠ at late times could be much
larger than that measured directly in simulations. In ref. [7] it was shown that the data is
compatible with a linear logarithmic growth. Here we extend that analysis including all the
data sets with different initial conditions and with bigger grids, in total comprising about 1000
simulations of which 100 are with grids larger than 40003. We test the linear logarithmic
increase with the following fit ansatz (see Appendix B.1 for more details):

⇠= c1 log+c0 +
c�1

log
+

c�2

log2 , (3)

where the coefficients c�1,�2 are taken with different values for each data set to account for
differing initial conditions, while the coefficients c1,0, which survive in the large log limit, are
taken universal across all data sets. As explained in [7] the string network starts showing
scaling behaviors after log = 4 (when strings can begin efficiently emitting axions with sub-
horizon wavelengths), which we choose as our starting point for the fit.5

3These take into account both the total number of simulations and the number of independent Hubble patches
in each simulation. For this reason the error bars increase toward the end of simulations where fewer Hubble
patches are available.

4These are roughly those with the least overdense initial conditions.
5In order to avoid artificial bias in favor of data with higher frequency time sampling in the fit, we sampled
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Why? Two reasons
SciPost Phys. 10, 050 (2021)
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Figure 2: The spectral index of the instantaneous axion emission q as a function of
time (represented by log(mr/H)) for the physical (left) and fat string systems (right). The
darker/lighter shaded regions correspond to the results of linear/quadratic fits to the data of
the simulations (in black). The clear increase in q implies that the axion spectrum is turning
IR dominated (i.e. q > 1), a regime that it will reach long before the physically relevant
log(mr/H) = 60÷ 70.

The value of q as a function of log(mr/H) is shown in Fig. 2. The data points represent
the average of q over many simulations and the error bars measure the associated statistical
errors.9 Although the spectral index is less than unity over the whole simulated range, a
nontrivial growth is evident, corresponding to a spectrum that is becoming more IR dominated.
The behavior is fit well by a linear function (i.e. q(log) = q0 + q1 log) in both the fat and
the physical systems (the dark shaded region in Fig. 2). Fits with an extra quadratic term
(+q2 log2) give compatible results (the lighter shaded region in Fig. 2), although with larger
uncertainties. This implies that the linear logarithmic growth will continue for, at the very
least, a few more e-foldings.

Hence the data in Fig. 2 strongly suggests that the spectrum becomes IR dominated (q > 1)
within one or two e-foldings beyond the simulation reach.10 Note however that the data
shown in Fig. 2 represent averages over many simulations: while at early times (log Æ 6) all
the simulations that comprise our data sets have q < 1, at late times (log ¶ 7.5) a portion
already shows an IR dominated instantaneous spectrum with q > 1. This strengthens our
confidence that the spectrum indeed turns IR dominated at slightly larger values of log. Further
suggestive evidence can be found in Figs. 14 and 15 of Appendix B.4.1, in which the shape of
the instantaneous spectrum F at different times is plotted.

This nontrivial log dependence of the emitted axion spectrum correlates with all the other
evidence of evolution of the attractor’s parameters, in particular with the reduction of UV mode
emission. The most conservative extrapolation of the data in Fig. 2 is to values of q larger than
unity at late times. Fortunately, as we will explain in the next Section, as long as q > 1 the
final axion abundance only has a very weak dependence on its precise value. For this reason
we will not attempt to perform a real extrapolation of q from the data in Fig. 2, but we will
just assume that at log> 60 its value is definitely larger than unity (say, q > 2).

To summarize, we performed dedicated high-statistics large-grid simulations of the axion
string network, providing strong evidence for nontrivial evolution of the network’s scaling
parameters towards the expected behavior of Nambu–Goto-like strings. In particular, both the

9At late times the statistical errors increase because of the reduction in the number of independent Hubble
patches in a simulation box. Meanwhile, at small values of the log the reduced range in the spectrum to fit q
(which is particularly important for physical simulations where the contamination from not-yet-fully-redshifted
UV modes is more severe) counteracts the large number of Hubble patches available at these times.

10Confirming this directly would require grids of order 200003 or bigger, which are beyond our current reach
(but may be reachable in the coming years), or through improved numerical algorithms [32].
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Axion generated after inflation
M. Buschmann, J. Foster, B.S.  PRL 2020
Simulate on static grid with ~1010 sites


Simulate from PQ phase transition to matter-radiation equality

M. Buschmann, J. Foster, B.S., A. Hook, AMReX Collaboration,                                   
Nature Communications (Feb. 2022)


Simulate on static grid with ~1010 sites


Simulate from PQ phase transition to matter-radiation equality

Simulate on adaptive grid equiv. to static grid with ~1015 sites 
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‣ Adaptive mesh to maintain high resolution around strings


‣ 6e6 CPU-hours over ~100,000 CPUs and ~100 TB RAM


‣ Goal: measure axion radiation from strings to compute DM abundance

Adaptive mesh



What if scaling solution assumption strongly violated?
2020

Answer with Adaptive Mesh Refinement Simulations 
(AMReX)



What if scaling solution assumption strongly violated?
2020

Answer with Adaptive Mesh Refinement Simulations 
(AMReX)



What if scaling solution assumption strongly violated?Axions with AMReX

1. We use 6 refinement levels (up to 131,0723 resolution) 


2. 1,024 KNL nodes (~70,000 cores)  on Cori (NERSC) — 100 TB memory


3. Refinement criteria: use radial mode to indicate presence of strings


4. Comparison: Buschmann et al. 2020 — ~2,0003 resolution



What if scaling solution assumption strongly violated?Axions with AMReX

start new refinement level to 
maintain resolution

static lattice lose 
resolution to strings at 

late times











What do we find?
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Figure 2. The string length per Hubble volume ⇠ increases
with time in our simulation, indicating a logarithmic violation
to the scaling solution [24], which would predict constant ⇠.
At late times in the simulation (large logmr/H) the growth
in ⇠ appears linear in logmr/H with coe�cient c1 ⇡ 0.25
as measured for the fit over the full logmr/H range shown,
but including terms all the way down to c�2/ log

2. The fit
illustrated by the solid curve only includes terms down to q0

but is limited to late times (log 2 (7.5, 9)); this fit leads to
c1 ⇡ 0.25 also. These fits indicate that at the beginning of
the QCD phase transition, at log⇤ ⇡ 65, we expect ⇠⇤ ⇡ 15.

The string length per Hubble volume is quantified
through the parameter ⇠, which is defined by ⇠ ⌘ `t

2
/V

with ` the total string length in the simulation volume
V. We determine ` by counting string-pierced plaquettes
in our simulation using the algorithm described in [33].
We illustrate ⇠ as a function of logmr/H in Fig. 2. We
compute ⇠ at points in time separated by a Hubble time
(� logmr/H = log 2), since the network is strongly cor-
related on time scales smaller than a Hubble time.

We verify that ⇠ increases linearly with logmr/H,
which was first suggested in [24, 27]. Ref. [27] con-
structed a suite of simulations on static grids of up to
45003 sites and out to at most logmr/H ⇠ 7.9; they fit
a model of the form ⇠ = c�2/ log

2 +c�1/ log+c0 + c1 log,
with log ⌘ logmr/H, to their ⇠ data for log 2 (4.5, 7.9)
and found c1 = 0.24 ± 0.02. Given mr ⇠ 1010 GeV
and the QCD phase transition beginning at temperatures
T ⇠ 1 GeV, the string network is expected to evolve until
log⇤ ⇠ 65, which is far beyond the dynamical range that
may be simulated.

In Fig. 2 we illustrate our fit of the same functional
form as in [27] to our ⇠ data over the range log 2 (4, 9);
we find c0 = �1.82 ± 0.01 and c1 = 0.254 ± 0.002 (see
Methods for details). As a systematic test we fit the
functional form ⇠ = c0+c1 log to the ⇠ data over the lim-
ited range log 2 (7.5, 9) and determine c0 ⇡ �1.05 and
c1 ⇡ 0.252. Importantly, the parameter c1, which governs
the large log behavior of ⇠, agrees between the two meth-
ods and agrees with the measurement in [27]. Assuming
that the QCD phase transition begins at log⇤ 2 (60, 70)
we estimate that at the beginning of the phase transition
⇠ = ⇠⇤ 2 (13, 17). The linear growth of ⇠ with logmr/H

does not support the analytic velocity-dependent one-

scale model (see Refs. [34–36]), which predicts that ⇠

should approach a constant at large log. On the other
hand, the observation that ⇠ grows linearly with log may
be naturally explained by the well-established logarith-
mic increase of the string tension with time, µ(t) ⇡

µ0 logmr/H with µ0 = ⇡f
2

a to leading order in large log
(see Supp. Fig. S2). A given string segment loses energy
at a constant rate that does not evolve with time [20],
and as a result energy builds up in the strings relative to
the situation where µ does not increase logarithmically
with time. This increase in energy is manifest by a loga-
rithmically increasing ⇠. (See Methods for details of this
argument.)

AXION RADIATION SPECTRUM

As the string network evolves in the scaling regime ax-
ions are produced at a rate �a ⇡ 2H⇢s, where ⇢s = ⇠µ/t

2

is the energy density in strings. As we show later in
this Article, the DM density from string-induced ax-
ion radiation is proportional to the number density of
axions at logmr/H = log⇤. To compute the num-
ber density we need to know the axion radiation spec-
trum from strings. We quantify the spectrum through
the normalized distribution F (k/H) = d log�a/d(k/H)
for physical momentum k. (See, e.g., [24] for a review
of the analytic aspects of the network evolution.) We
compute F numerically from our simulation ouput by
F (k/H) / (1/R

3) d
dt

�
R

3
@⇢a/@k

�
, with @⇢a/@k the time-

dependent di↵erential axion energy density spectrum.
The axion radiation is distributed in frequency be-

tween the e↵ective infrared (IR) cuto↵, which is provided
by H, and the e↵ective ultraviolet (UV) cuto↵ set by the
string width ⇠mr. For momenta k well between these
two scales (H ⌧ k ⌧ mr) the radiation spectrum is ex-
pected to follow a power-law. Below, we describe how we
measure the index of this power law.
We calculate F via finite di↵erences in nonuniform

�t corresponding to uniform intervals in logmr/H. In
our fiducial analysis, we calculate instantaneous emission
spectra using intervals of � logmr/H = 0.25, which is of
order Hubble-time separations. At each logmr/H value,
we fit a power-law model F (k/H) / 1/(k/H)q to the in-
stantaneous spectra between an IR cut-o↵ kIR = xIRH

and a UV cut-o↵ kUV = mr/xUV, with the cut-o↵s cho-
sen to be su�ciently far from the physical IR and UV
cut-o↵s. (See the methods for details of how this fit is
performed.) We chose xIR = 50 and xUV = 16 in order
to be su�ciently far into the power law regime of k.
In the top panel of Fig. 3 we illustrate F computed

at logmr/H = 8.75 for our fiducial choice of xIR and
xUV as well as two systematic variations on the choice
of fitting range, extending to xIR = 30 (“Extended IR
Data”) and xUV = 12 (“Extended UV Data”). The best-
fit power-law models are also illustrated. In the bottom
panel, we show the evolution of the index q as a func-
tion of logmr/H, for both our fiducial analysis and for

1. strings per 
Hubble 
increases 
logarithmically 
with time (and 
understand this 
analytically)



What do we find?

2. radiation 
does not 
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dominated — 
conformal to 
within few %
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Figure 3. (Above) Example fits to the instantaneous emis-
sion spectrum calculated at logmr/H = 8.75. In our fiducial
analysis, the instantaneous emission spectra are calculated
using a timestep corresponding to � logmr/H = 0.25, and
a power-law model is fit to the data at k between the IR
and UV cuto↵s of kIR = 50H and kUV = mr/16. The data
included in this fit range is shown in grey with the best-fit
power law depicted in black. We also illustrate two system-
atic variations, one in which we extend our IR cuto↵ down to
kIR = 30H (“Extended IR Data”), and another where we ex-
tend our UV cuto↵ upward to kUV = mr/12 (“Extended UV
data”). For clarity, the data are down-binned by a factor of 2
in k/H. (Below) The evolution of the fitted power-law index
q as a function of logmr/H. The best fit indices obtained in
our fiducial analysis are shown in black, with red showing the
indices computed using � logmr/H = log 2. In our fiducial
analysis we constrain q = 1.02 ± 0.03, which is shaded. For
comparison, the best fit linear growth of q obtained in [27] is
shown in dotted grey.

a systematic variation where we use � logmr/H = log 2
when computing F . We compare our results to the best-
fit model obtained in [27], who claimed evidence that
q evolves logarithmically in time, with q > 1 at late
times. In particular, Ref. [27] fit the evolution model
q(t) = q1 log(mr/H) + q0 to their q data and found evi-
dence for non-zero q1, claiming q1 = 0.053 ± 0.005. Fit-
ting this model to our q data (see Methods for details)
yields q1 = �0.04 ± 0.08 and q0 = 1.36 ± 0.69, which is
in tension with the results in [27]. (The best-fit model
in that work is inconsistent at the level ⇠1.8� with our
measured q values). Given that we do not find evidence
for logarithmic growth of q, we impose q1 = 0 and find
q0 = 1.02 ± 0.04, which is interestingly consistent with
the scale invariant spectrum q0 = 1, suggested in [13], to
within ⇠5%. An additional argument in favor of q0 = 1 is
that the string loops appear logarithmically distributed
in size, as shown in Fig. S3 and as expected for a network
of intersecting strings (see Methods).

One di↵erence between [27] and this work that may

contribute to the di↵erence in q is that Ref. [27] used
xUV = 4; in Supp. Fig. S4 we show that using xUV = 4
in our fits also leads to positive q1 at non-trivial signif-
icance (see Supp. Tab. S2); however, as illustrated in
Supp. Fig. S8 at large logmr/H and xUV = 4 the fits
become visibly poor at large k/H because the spectrum
F (k/H) begins to drop rapidly for k ⇠ mr. The fact
that [27] is only resolving the string cores by around one
grid site at large logmr/H may also play a role. We test
the importance of the string-core resolution by perform-
ing an alternate simulation where we do not add extra
refinement levels after logmr/H ⇡ 5.3, such that � is
resolved by one grid site at logmr/H ⇡ 8.1 (see Supp.
Fig. S1). As illustrated in Supp. Fig. S10, in this case
the spectrum becomes distinctly biased towards larger q

at larger log, where the string-core resolution is low.
Our result that q1 is consistent with zero is robust

to changes to xUV (Supp. Fig. S4 and Tab. S2), for
32 � xUV & 8, to xIR (Supp. Fig. S5 and Tab. S1), for
the range 30  xIR  100 that we consider, to the � log
size used in computing F (Supp. Fig. S6 and Tab. S3), for
0.125  � log  log 2, and to the method used for regu-
lating the string cores when computing F (Supp. Fig. S7
and Tab. S4).

DARK MATTER DENSITY

The axion EOM during the QCD epoch generi-
cally violates number density conservation. In partic-
ular, the non-linear axion potential is a function of
cos(a/fa), which implies that non-linear terms in the
EOM are important if |a/fa| & ⇡. Given the in-
stantaneous spectrum F (k/H) we may compute the
average field value squared at a given time t by
h(a/fa)2i ⇡ 4⇡

R t
(dt

0
/t)⇠(t0)h(H 0

/k
0)2i logmr/H

0, with
h(H 0

/k
0)2i being the expected value of H/k at time

t
0 computed from the distribution F (k/H) (see Meth-
ods and note that this is accurate to leading order in
logmr/H). We expect h(H/k)2i to be proportional to
H

2
/k

2

IR
, with kIR/H /

p
⇠ being the e↵ective IR cut-

o↵ for F (k/H) that arises from the typical separation of
strings ⇠k

�1

IR
; note that this implies that as ⇠(t) grows

with time, the e↵ective IR cut-o↵ moves towards the UV
like

p
⇠ because the strings become more closely packed

together. Let us define a dimensionless coe�cient � by
the relation h(H/k)2i�1 = � ⇠; a fit of this functional
form to the spectral data leads to � = 840 ± 70 for
q = 1.06 (see Supp. Fig. S9). Note that smaller values of
q lead to larger values of � and that q = 1.06 is the maxi-
mum value of q allowed at 1� from our analysis. In terms
of this coe�cient h(a/fa)2i ⇡ (4⇡/�) logmr/H . 1.1
(for logmr/H . 70), which implies that non-linear num-
ber changing processes are at most marginally relevant.
(Non-linear corrections to the linearized force are at most
⇠15%.) This justifies our use of number density conser-
vation below in estimating the DM abundance.
To compute the axion number density we need to com-

@⇢

@k
⇠ 1

kq

q 2 (0.98, 1.04)

ma 2 (40, 180) µeV ma = 65± 6 µeV q = 1
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Figure 1. Each panel illustrates the string network (yellow strings), domain walls (red mesh), and energy density of the axion
field (blue-white intensity) before (left), during (middle), and after (right) the QCD phase transition (see animation).

by �̃ ⌘ �f
2
a/ma(⌘̂1)2. This parameter can be interpreted

as the squared mass of the radial PQ mode relative to the
axion mass, at conformal time ⌘̂1. In order for excitations
of the radial mode to be well-resolved in our simulation,
we require that the resolution of our simulation �x̄, with
x̄ = a1H1x and x the spatial coordinate, be such that
1/(⌘̂�̃

1/2�x̄) > 1, making simulations for realistic axion
parameters �̃ impossible. We break the relation between
�̃ and fa and consider �̃ = [1024, 1448, 3072, 3584, 5504]
in order to study the impact of this parameter.

We illustrate three important phases of the QCD-
epoch simulation in Fig. 1. The left-most panel is the
initial state discussed previously in the context of the
PQ-epoch simulation final-state. When ma(⌘̂) = 3H(⌘̂)
at ⌘̂ ⇡ 1.22, strings grow longer and become less nu-
merous, with domain walls forming on surfaces bounded
by the strings. This is illustrated in the middle panel,
with red colors indicating domain walls. As the tem-
perature continues to decrease with increasing ⌘̂, strings
and domain walls tighten and decrease in size until they
collapse. By ⌘̂ & 2.0, the network collapses in its en-
tirety. Shortly thereafter, we observe the formation of
oscillons [16, 20, 54]. We note that the oscillon field con-
figuration is relativistic, so that near the origin of the
oscillons the oscillation wavelength is ⇠ma(⌘̂)�1, which
is rapidly shrinking with increasing time. After the zero-
temperature mass is reached, oscillons stop shrinking and
slowly dissipate at varying rates until the full field enters
the linear regime. White regions in the right-most panel
of Fig. 1 denote regions of high axion energy density,
which are mostly inhabited by oscillons.

At the end of the simulation, the field has relaxed
into the linear regime (e.g., axion self-interactions are
unimportant), but the field remains mildly relativistic
because axion radiation is produced during the string-
network collapse and during the oscillon collapse. It is
therefore important to continue evolving the axion field
until a time nearer to matter-radiation equality to al-
low the field to become non-relativistic everywhere and
also to allow the compact but high-momentum overden-
sities to spread out. We perform this evolution analyti-

cally by exactly solving the linear axion equations of mo-
tion in Fourier space. We end this evolution shortly be-
fore matter-radiation equality (T ⇠ keV), at which time
proper velocities have frozen out but local radiation dom-
ination is preserved at all locations in our simulation box
so that gravitational e↵ects remain negligible.
Analysis and results.— We provide Supplementary
Data [55] containing the final state from our most real-
istic QCD-epoch simulation, after having performed the
evolution to near matter-radiation equality. Note that
the axion field after the QCD phase transition is highly
non-Gaussian and phase-correlated at small scales and
cannot accurately be reconstructed from the power spec-
trum. In fact considering that we find large overdensi-
ties � (� ⇠ 10), with � = (⇢ � ⇢̄)/⇢ and ⇢̄ (⇢) the aver-
age (local) DM density, the field could not possibly be
Gaussian at these scales, considering that Gaussian ran-
dom fields have symmetric over and under-densities but
under-densities with � < �1 would have negative DM
density.
We may try to estimate the present-day mass function

by performing a clustering analysis on the final states. In
particular, we expect that the large overdensities will de-
tach from the cosmic expansion, due to reaching locally
matter-radiation equality before the rest of the Universe,
and collapse onto themselves under gravity. Thus by clus-
tering the 3-D spatial energy density distribution from
the simulation slightly before matter-radiation equality
and quantifying the distribution of masses and overden-
sities that we find, we can make predictions for the spec-
trum of minihalo masses and concentrations today.
From the final-state we construct an overdensity field

�(x), and we identify overdensities as closed regions of
positive �. Under this definition 50% of the total mass is
in overdensities. In practice, we identify these regions by
first finding all positive local maxima, then recursively
identifying all neighboring grid sites that are larger than
20% of the corresponding local maxima. This thresh-
old is necessary to have a clear boundary between di↵er-
ent overdensities, though the final mass function is not
strongly dependent on the specific choice of 20%. Addi-

T ~ 1012 GeV

T ~ eV

*Scaling solution assumption!
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Figure 3. (Above) Example fits to the instantaneous emis-
sion spectrum calculated at logmr/H = 8.75. In our fiducial
analysis, the instantaneous emission spectra are calculated
using a timestep corresponding to � logmr/H = 0.25, and
a power-law model is fit to the data at k between the IR
and UV cuto↵s of kIR = 50H and kUV = mr/16. The data
included in this fit range is shown in grey with the best-fit
power law depicted in black. We also illustrate two system-
atic variations, one in which we extend our IR cuto↵ down to
kIR = 30H (“Extended IR Data”), and another where we ex-
tend our UV cuto↵ upward to kUV = mr/12 (“Extended UV
data”). For clarity, the data are down-binned by a factor of 2
in k/H. (Below) The evolution of the fitted power-law index
q as a function of logmr/H. The best fit indices obtained in
our fiducial analysis are shown in black, with red showing the
indices computed using � logmr/H = log 2. In our fiducial
analysis we constrain q = 1.02 ± 0.03, which is shaded. For
comparison, the best fit linear growth of q obtained in [27] is
shown in dotted grey.

a systematic variation where we use � logmr/H = log 2
when computing F . We compare our results to the best-
fit model obtained in [27], who claimed evidence that
q evolves logarithmically in time, with q > 1 at late
times. In particular, Ref. [27] fit the evolution model
q(t) = q1 log(mr/H) + q0 to their q data and found evi-
dence for non-zero q1, claiming q1 = 0.053 ± 0.005. Fit-
ting this model to our q data (see Methods for details)
yields q1 = �0.04 ± 0.08 and q0 = 1.36 ± 0.69, which is
in tension with the results in [27]. (The best-fit model
in that work is inconsistent at the level ⇠1.8� with our
measured q values). Given that we do not find evidence
for logarithmic growth of q, we impose q1 = 0 and find
q0 = 1.02 ± 0.04, which is interestingly consistent with
the scale invariant spectrum q0 = 1, suggested in [13], to
within ⇠5%. An additional argument in favor of q0 = 1 is
that the string loops appear logarithmically distributed
in size, as shown in Fig. S3 and as expected for a network
of intersecting strings (see Methods).

One di↵erence between [27] and this work that may

contribute to the di↵erence in q is that Ref. [27] used
xUV = 4; in Supp. Fig. S4 we show that using xUV = 4
in our fits also leads to positive q1 at non-trivial signif-
icance (see Supp. Tab. S2); however, as illustrated in
Supp. Fig. S8 at large logmr/H and xUV = 4 the fits
become visibly poor at large k/H because the spectrum
F (k/H) begins to drop rapidly for k ⇠ mr. The fact
that [27] is only resolving the string cores by around one
grid site at large logmr/H may also play a role. We test
the importance of the string-core resolution by perform-
ing an alternate simulation where we do not add extra
refinement levels after logmr/H ⇡ 5.3, such that � is
resolved by one grid site at logmr/H ⇡ 8.1 (see Supp.
Fig. S1). As illustrated in Supp. Fig. S10, in this case
the spectrum becomes distinctly biased towards larger q

at larger log, where the string-core resolution is low.
Our result that q1 is consistent with zero is robust

to changes to xUV (Supp. Fig. S4 and Tab. S2), for
32 � xUV & 8, to xIR (Supp. Fig. S5 and Tab. S1), for
the range 30  xIR  100 that we consider, to the � log
size used in computing F (Supp. Fig. S6 and Tab. S3), for
0.125  � log  log 2, and to the method used for regu-
lating the string cores when computing F (Supp. Fig. S7
and Tab. S4).

DARK MATTER DENSITY

The axion EOM during the QCD epoch generi-
cally violates number density conservation. In partic-
ular, the non-linear axion potential is a function of
cos(a/fa), which implies that non-linear terms in the
EOM are important if |a/fa| & ⇡. Given the in-
stantaneous spectrum F (k/H) we may compute the
average field value squared at a given time t by
h(a/fa)2i ⇡ 4⇡

R t
(dt

0
/t)⇠(t0)h(H 0

/k
0)2i logmr/H

0, with
h(H 0

/k
0)2i being the expected value of H/k at time

t
0 computed from the distribution F (k/H) (see Meth-
ods and note that this is accurate to leading order in
logmr/H). We expect h(H/k)2i to be proportional to
H

2
/k

2

IR
, with kIR/H /

p
⇠ being the e↵ective IR cut-

o↵ for F (k/H) that arises from the typical separation of
strings ⇠k

�1

IR
; note that this implies that as ⇠(t) grows

with time, the e↵ective IR cut-o↵ moves towards the UV
like

p
⇠ because the strings become more closely packed

together. Let us define a dimensionless coe�cient � by
the relation h(H/k)2i�1 = � ⇠; a fit of this functional
form to the spectral data leads to � = 840 ± 70 for
q = 1.06 (see Supp. Fig. S9). Note that smaller values of
q lead to larger values of � and that q = 1.06 is the maxi-
mum value of q allowed at 1� from our analysis. In terms
of this coe�cient h(a/fa)2i ⇡ (4⇡/�) logmr/H . 1.1
(for logmr/H . 70), which implies that non-linear num-
ber changing processes are at most marginally relevant.
(Non-linear corrections to the linearized force are at most
⇠15%.) This justifies our use of number density conser-
vation below in estimating the DM abundance.
To compute the axion number density we need to com-

p
⇠IR cut-off moves to UV like (maximum string curvature scale)
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Figure 3. (Above) Example fits to the instantaneous emis-
sion spectrum calculated at logmr/H = 8.75. In our fiducial
analysis, the instantaneous emission spectra are calculated
using a timestep corresponding to � logmr/H = 0.25, and
a power-law model is fit to the data at k between the IR
and UV cuto↵s of kIR = 50H and kUV = mr/16. The data
included in this fit range is shown in grey with the best-fit
power law depicted in black. We also illustrate two system-
atic variations, one in which we extend our IR cuto↵ down to
kIR = 30H (“Extended IR Data”), and another where we ex-
tend our UV cuto↵ upward to kUV = mr/12 (“Extended UV
data”). For clarity, the data are down-binned by a factor of 2
in k/H. (Below) The evolution of the fitted power-law index
q as a function of logmr/H. The best fit indices obtained in
our fiducial analysis are shown in black, with red showing the
indices computed using � logmr/H = log 2. In our fiducial
analysis we constrain q = 1.02 ± 0.03, which is shaded. For
comparison, the best fit linear growth of q obtained in [27] is
shown in dotted grey.

a systematic variation where we use � logmr/H = log 2
when computing F . We compare our results to the best-
fit model obtained in [27], who claimed evidence that
q evolves logarithmically in time, with q > 1 at late
times. In particular, Ref. [27] fit the evolution model
q(t) = q1 log(mr/H) + q0 to their q data and found evi-
dence for non-zero q1, claiming q1 = 0.053 ± 0.005. Fit-
ting this model to our q data (see Methods for details)
yields q1 = �0.04 ± 0.08 and q0 = 1.36 ± 0.69, which is
in tension with the results in [27]. (The best-fit model
in that work is inconsistent at the level ⇠1.8� with our
measured q values). Given that we do not find evidence
for logarithmic growth of q, we impose q1 = 0 and find
q0 = 1.02 ± 0.04, which is interestingly consistent with
the scale invariant spectrum q0 = 1, suggested in [13], to
within ⇠5%. An additional argument in favor of q0 = 1 is
that the string loops appear logarithmically distributed
in size, as shown in Fig. S3 and as expected for a network
of intersecting strings (see Methods).

One di↵erence between [27] and this work that may

contribute to the di↵erence in q is that Ref. [27] used
xUV = 4; in Supp. Fig. S4 we show that using xUV = 4
in our fits also leads to positive q1 at non-trivial signif-
icance (see Supp. Tab. S2); however, as illustrated in
Supp. Fig. S8 at large logmr/H and xUV = 4 the fits
become visibly poor at large k/H because the spectrum
F (k/H) begins to drop rapidly for k ⇠ mr. The fact
that [27] is only resolving the string cores by around one
grid site at large logmr/H may also play a role. We test
the importance of the string-core resolution by perform-
ing an alternate simulation where we do not add extra
refinement levels after logmr/H ⇡ 5.3, such that � is
resolved by one grid site at logmr/H ⇡ 8.1 (see Supp.
Fig. S1). As illustrated in Supp. Fig. S10, in this case
the spectrum becomes distinctly biased towards larger q

at larger log, where the string-core resolution is low.
Our result that q1 is consistent with zero is robust

to changes to xUV (Supp. Fig. S4 and Tab. S2), for
32 � xUV & 8, to xIR (Supp. Fig. S5 and Tab. S1), for
the range 30  xIR  100 that we consider, to the � log
size used in computing F (Supp. Fig. S6 and Tab. S3), for
0.125  � log  log 2, and to the method used for regu-
lating the string cores when computing F (Supp. Fig. S7
and Tab. S4).

DARK MATTER DENSITY

The axion EOM during the QCD epoch generi-
cally violates number density conservation. In partic-
ular, the non-linear axion potential is a function of
cos(a/fa), which implies that non-linear terms in the
EOM are important if |a/fa| & ⇡. Given the in-
stantaneous spectrum F (k/H) we may compute the
average field value squared at a given time t by
h(a/fa)2i ⇡ 4⇡

R t
(dt

0
/t)⇠(t0)h(H 0

/k
0)2i logmr/H

0, with
h(H 0

/k
0)2i being the expected value of H/k at time

t
0 computed from the distribution F (k/H) (see Meth-
ods and note that this is accurate to leading order in
logmr/H). We expect h(H/k)2i to be proportional to
H
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/k
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IR
, with kIR/H /
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⇠ being the e↵ective IR cut-

o↵ for F (k/H) that arises from the typical separation of
strings ⇠k
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IR
; note that this implies that as ⇠(t) grows

with time, the e↵ective IR cut-o↵ moves towards the UV
like

p
⇠ because the strings become more closely packed

together. Let us define a dimensionless coe�cient � by
the relation h(H/k)2i�1 = � ⇠; a fit of this functional
form to the spectral data leads to � = 840 ± 70 for
q = 1.06 (see Supp. Fig. S9). Note that smaller values of
q lead to larger values of � and that q = 1.06 is the maxi-
mum value of q allowed at 1� from our analysis. In terms
of this coe�cient h(a/fa)2i ⇡ (4⇡/�) logmr/H . 1.1
(for logmr/H . 70), which implies that non-linear num-
ber changing processes are at most marginally relevant.
(Non-linear corrections to the linearized force are at most
⇠15%.) This justifies our use of number density conser-
vation below in estimating the DM abundance.
To compute the axion number density we need to com-
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Figure 4. Evolution of the axion number density. The
inverse expectation value hH/ki

�1 is computed using the in-
stantaneous axion spectrum F (k/H) by numerically integrat-
ing the spectrum to k/H = xmax = 50 and then analytically
integrating the power law distribution F (x) / x

�q from xmax

to the UV cut-o↵ at k/H ⇠ e
log⇤ for log⇤ ⇡ 65. The data are

illustrated along with their 68% uncertainties. For q > 1 the
expectation value does not strongly depend on the UV cut
o↵ but is instead a function of the e↵ective IR cut-o↵, which
is set by ⇠ such that hH/Ki

�1 = �
p
⇠ for some parameter

�, which we determine by fitting this model to the numerical
data as illustrated here. Smaller values of � correspond to
larger axion number densities and thus large axion DM den-
sities. Here, we illustrate the result for the maximum allowed
q of 1.06, which leads to the smallest � consistent with our
simulation results.

strings ⇠k
�1
IR ; note that this implies that as ⇠(t) grows

with time, the e↵ective IR cut-o↵ moves towards the
UV like

p
⇠ because the strings become more closely

packed together. Let us define a dimensionless coe�-
cient � by the relation h(H/k)2i�1 = � ⇠; a fit of this
functional form to the spectral data leads to � = 840±70
for q = 1.06 (see Supplementary Fig. 9). Note that
smaller values of q lead to larger values of � and that
q = 1.06 is the maximum value of q allowed at 1� from
our analysis. In terms of this coe�cient h(a/fa)2i ⇡
(4⇡/�) logmr/H . 1.1 (for logmr/H . 70), which im-
plies that non-linear number changing processes are at
most marginally relevant. (Non-linear corrections to the
linearized force are at most ⇠15%.) This justifies our use
of number density conservation below in estimating the
DM abundance.

To compute the axion number density we need to com-
pute the expectation value hH/ki over the distribution
F (k/H). Following the justification in the previous para-
graph we may parameterize this expectation value in
terms of the IR cut-o↵ and thus ⇠, hH/ki�1 = �

p
⇠,

for a dimensionless parameter �. In Fig. 4 we illustrate
the hH/ki�1 data, assuming q = 1.06, as a function of
logmr/H along with the best fit model, which leads to
� = 113 ± 7; note that smaller values of q lead to larger
values of �. To compute hH/ki�1 (and also h(H/k)2i�1)
we numerically integrate the spectrum up to k/H =
xmax, with xmax = 50, and then analytically integrate
the power-law functional form F (k/H) / 1/k

q from xmax

to k/H ⇠ e
log⇤ , with log⇤ ⇠ 60 � 70. The axion number

density at the epoch of the QCD phase transition is then,
to leading order in log⇤, n

string
a ⇡ (8⇡f

2
aH/�)

p
⇠⇤ log⇤.

If the spectrum is exactly scale invariant at large k,
such that q = 1, then � / log(mr/H). Defining � =
�1 log(mr/H) in this case we compute �1 = 6.2 ± 0.4.
The axion number density from strings is then n

string
a ⇡

(8⇡f
2
aH/�1)

p
⇠⇤. At 1� we find that q could be as low as

q ⇡ 0.98. For q < 1 the quantity � increases for increasing
UV cut-o↵s like (mr/H)1�q; in particular, for q = 0.98
and logmr/H = 70 we calculate � = 820 ± 50. Thus,
accounting for the uncertainty on q from our simulations
we find that � is in the range � 2 (106, 870).
Let us more precisely define the time t⇤ as the time

when the axion field becomes dynamical, which is when
3H(t⇤) = ma(t⇤), for a time-dependent mass ma(t)
that is increasing rapidly during the QCD phase tran-
sition [30]. The axion string network is observed to col-
lapse around t⇤ (see, e.g., [26]), meaning that at times
t & t⇤ axion number density is conserved. Assuming ax-
ion number density conservation allows us to relate the
present-day DM abundance to the expression for n

string
a

at t⇤ (see Methods):

⌦str
a ⇡ 0.12h

�2

✓
fa

4.3 · 1010GeV

◆1.17 107

�

r
⇠⇤
17

log⇤
70

. (2)

Axions produced from domain wall and misalignment dy-
namics during the QCD phase transition provide a sub-
dominant contribution to the DM density [26]: ⌦QCD

a ⇡
0.017h

�2(fa/4.3 · 1010 GeV)1.17. The DM abundance as
measured by the Planck Observatory using the cosmic
microwave background is ⌦DM = (0.12 ± 0.0012)h�2,
with h the Hubble rate scaling factor [37]. Adding in
the contribution from the QCD phase transition ⌦QCD

a ,
and assuming q 2 (0.98, 1.06), we find that the fa that
gives rise to the observed DM abundance should be in the
range fa 2 (3.1 ⇥ 1010, 1.4 ⇥ 1011) GeV (ma 2 (40, 180)
µeV), where for the lower fa bound we have conserva-
tively allowed for the possibility that at t⇤ the remaining
energy density in strings is instantaneously deposited into
axions with spectrum F , raising the string-induced DM
density by a factor of 3/2, though in actuality this contri-
bution is likely smaller since the spectrum shifts towards
the UV as ma(t) increases. If the index is scale invariant
(q = 1), then we predict ma = 65 ± 6 µeV.

DISCUSSION

In this work we provide the largest and highest-
resolution simulation of the axion string network to-date
by making use of an AMR framework that allows us to
resolve the axion string cores while maintaining lower res-
olution over the majority of the simulation volume. Our
AMR approach may be used in the future to simulate the
axion dynamics at the QCD epoch where domain walls
form and the string network collapses [26] and to study

Numerically integrate spectrum in IR, power-law fit in UV 
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Figure 4. Evolution of the axion number density. The
inverse expectation value hH/ki

�1 is computed using the in-
stantaneous axion spectrum F (k/H) by numerically integrat-
ing the spectrum to k/H = xmax = 50 and then analytically
integrating the power law distribution F (x) / x

�q from xmax

to the UV cut-o↵ at k/H ⇠ e
log⇤ for log⇤ ⇡ 65. The data are

illustrated along with their 68% uncertainties. For q > 1 the
expectation value does not strongly depend on the UV cut
o↵ but is instead a function of the e↵ective IR cut-o↵, which
is set by ⇠ such that hH/Ki

�1 = �
p
⇠ for some parameter

�, which we determine by fitting this model to the numerical
data as illustrated here. Smaller values of � correspond to
larger axion number densities and thus large axion DM den-
sities. Here, we illustrate the result for the maximum allowed
q of 1.06, which leads to the smallest � consistent with our
simulation results.
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IR ; note that this implies that as ⇠(t) grows

with time, the e↵ective IR cut-o↵ moves towards the
UV like

p
⇠ because the strings become more closely

packed together. Let us define a dimensionless coe�-
cient � by the relation h(H/k)2i�1 = � ⇠; a fit of this
functional form to the spectral data leads to � = 840±70
for q = 1.06 (see Supplementary Fig. 9). Note that
smaller values of q lead to larger values of � and that
q = 1.06 is the maximum value of q allowed at 1� from
our analysis. In terms of this coe�cient h(a/fa)2i ⇡
(4⇡/�) logmr/H . 1.1 (for logmr/H . 70), which im-
plies that non-linear number changing processes are at
most marginally relevant. (Non-linear corrections to the
linearized force are at most ⇠15%.) This justifies our use
of number density conservation below in estimating the
DM abundance.

To compute the axion number density we need to com-
pute the expectation value hH/ki over the distribution
F (k/H). Following the justification in the previous para-
graph we may parameterize this expectation value in
terms of the IR cut-o↵ and thus ⇠, hH/ki�1 = �

p
⇠,

for a dimensionless parameter �. In Fig. 4 we illustrate
the hH/ki�1 data, assuming q = 1.06, as a function of
logmr/H along with the best fit model, which leads to
� = 113 ± 7; note that smaller values of q lead to larger
values of �. To compute hH/ki�1 (and also h(H/k)2i�1)
we numerically integrate the spectrum up to k/H =
xmax, with xmax = 50, and then analytically integrate
the power-law functional form F (k/H) / 1/k

q from xmax

to k/H ⇠ e
log⇤ , with log⇤ ⇠ 60 � 70. The axion number

density at the epoch of the QCD phase transition is then,
to leading order in log⇤, n

string
a ⇡ (8⇡f

2
aH/�)

p
⇠⇤ log⇤.

If the spectrum is exactly scale invariant at large k,
such that q = 1, then � / log(mr/H). Defining � =
�1 log(mr/H) in this case we compute �1 = 6.2 ± 0.4.
The axion number density from strings is then n

string
a ⇡

(8⇡f
2
aH/�1)

p
⇠⇤. At 1� we find that q could be as low as

q ⇡ 0.98. For q < 1 the quantity � increases for increasing
UV cut-o↵s like (mr/H)1�q; in particular, for q = 0.98
and logmr/H = 70 we calculate � = 820 ± 50. Thus,
accounting for the uncertainty on q from our simulations
we find that � is in the range � 2 (106, 870).
Let us more precisely define the time t⇤ as the time

when the axion field becomes dynamical, which is when
3H(t⇤) = ma(t⇤), for a time-dependent mass ma(t)
that is increasing rapidly during the QCD phase tran-
sition [30]. The axion string network is observed to col-
lapse around t⇤ (see, e.g., [26]), meaning that at times
t & t⇤ axion number density is conserved. Assuming ax-
ion number density conservation allows us to relate the
present-day DM abundance to the expression for n

string
a

at t⇤ (see Methods):
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Axions produced from domain wall and misalignment dy-
namics during the QCD phase transition provide a sub-
dominant contribution to the DM density [26]: ⌦QCD

a ⇡
0.017h

�2(fa/4.3 · 1010 GeV)1.17. The DM abundance as
measured by the Planck Observatory using the cosmic
microwave background is ⌦DM = (0.12 ± 0.0012)h�2,
with h the Hubble rate scaling factor [37]. Adding in
the contribution from the QCD phase transition ⌦QCD

a ,
and assuming q 2 (0.98, 1.06), we find that the fa that
gives rise to the observed DM abundance should be in the
range fa 2 (3.1 ⇥ 1010, 1.4 ⇥ 1011) GeV (ma 2 (40, 180)
µeV), where for the lower fa bound we have conserva-
tively allowed for the possibility that at t⇤ the remaining
energy density in strings is instantaneously deposited into
axions with spectrum F , raising the string-induced DM
density by a factor of 3/2, though in actuality this contri-
bution is likely smaller since the spectrum shifts towards
the UV as ma(t) increases. If the index is scale invariant
(q = 1), then we predict ma = 65 ± 6 µeV.

DISCUSSION

In this work we provide the largest and highest-
resolution simulation of the axion string network to-date
by making use of an AMR framework that allows us to
resolve the axion string cores while maintaining lower res-
olution over the majority of the simulation volume. Our
AMR approach may be used in the future to simulate the
axion dynamics at the QCD epoch where domain walls
form and the string network collapses [26] and to study
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Figure 2. The string length per Hubble volume ⇠ increases
with time in our simulation, indicating a logarithmic violation
to the scaling solution [24], which would predict constant ⇠.
At late times in the simulation (large logmr/H) the growth
in ⇠ appears linear in logmr/H with coe�cient c1 ⇡ 0.25
as measured for the fit over the full logmr/H range shown,
but including terms all the way down to c�2/ log

2. The fit
illustrated by the solid curve only includes terms down to q0

but is limited to late times (log 2 (7.5, 9)); this fit leads to
c1 ⇡ 0.25 also. These fits indicate that at the beginning of
the QCD phase transition, at log⇤ ⇡ 65, we expect ⇠⇤ ⇡ 15.

The string length per Hubble volume is quantified
through the parameter ⇠, which is defined by ⇠ ⌘ `t

2
/V

with ` the total string length in the simulation volume
V. We determine ` by counting string-pierced plaquettes
in our simulation using the algorithm described in [33].
We illustrate ⇠ as a function of logmr/H in Fig. 2. We
compute ⇠ at points in time separated by a Hubble time
(� logmr/H = log 2), since the network is strongly cor-
related on time scales smaller than a Hubble time.

We verify that ⇠ increases linearly with logmr/H,
which was first suggested in [24, 27]. Ref. [27] con-
structed a suite of simulations on static grids of up to
45003 sites and out to at most logmr/H ⇠ 7.9; they fit
a model of the form ⇠ = c�2/ log

2 +c�1/ log+c0 + c1 log,
with log ⌘ logmr/H, to their ⇠ data for log 2 (4.5, 7.9)
and found c1 = 0.24 ± 0.02. Given mr ⇠ 1010 GeV
and the QCD phase transition beginning at temperatures
T ⇠ 1 GeV, the string network is expected to evolve until
log⇤ ⇠ 65, which is far beyond the dynamical range that
may be simulated.

In Fig. 2 we illustrate our fit of the same functional
form as in [27] to our ⇠ data over the range log 2 (4, 9);
we find c0 = �1.82 ± 0.01 and c1 = 0.254 ± 0.002 (see
Methods for details). As a systematic test we fit the
functional form ⇠ = c0+c1 log to the ⇠ data over the lim-
ited range log 2 (7.5, 9) and determine c0 ⇡ �1.05 and
c1 ⇡ 0.252. Importantly, the parameter c1, which governs
the large log behavior of ⇠, agrees between the two meth-
ods and agrees with the measurement in [27]. Assuming
that the QCD phase transition begins at log⇤ 2 (60, 70)
we estimate that at the beginning of the phase transition
⇠ = ⇠⇤ 2 (13, 17). The linear growth of ⇠ with logmr/H

does not support the analytic velocity-dependent one-

scale model (see Refs. [34–36]), which predicts that ⇠

should approach a constant at large log. On the other
hand, the observation that ⇠ grows linearly with log may
be naturally explained by the well-established logarith-
mic increase of the string tension with time, µ(t) ⇡

µ0 logmr/H with µ0 = ⇡f
2

a to leading order in large log
(see Supp. Fig. S2). A given string segment loses energy
at a constant rate that does not evolve with time [20],
and as a result energy builds up in the strings relative to
the situation where µ does not increase logarithmically
with time. This increase in energy is manifest by a loga-
rithmically increasing ⇠. (See Methods for details of this
argument.)

AXION RADIATION SPECTRUM

As the string network evolves in the scaling regime ax-
ions are produced at a rate �a ⇡ 2H⇢s, where ⇢s = ⇠µ/t

2

is the energy density in strings. As we show later in
this Article, the DM density from string-induced ax-
ion radiation is proportional to the number density of
axions at logmr/H = log⇤. To compute the num-
ber density we need to know the axion radiation spec-
trum from strings. We quantify the spectrum through
the normalized distribution F (k/H) = d log�a/d(k/H)
for physical momentum k. (See, e.g., [24] for a review
of the analytic aspects of the network evolution.) We
compute F numerically from our simulation ouput by
F (k/H) / (1/R

3) d
dt

�
R

3
@⇢a/@k

�
, with @⇢a/@k the time-

dependent di↵erential axion energy density spectrum.
The axion radiation is distributed in frequency be-

tween the e↵ective infrared (IR) cuto↵, which is provided
by H, and the e↵ective ultraviolet (UV) cuto↵ set by the
string width ⇠mr. For momenta k well between these
two scales (H ⌧ k ⌧ mr) the radiation spectrum is ex-
pected to follow a power-law. Below, we describe how we
measure the index of this power law.
We calculate F via finite di↵erences in nonuniform

�t corresponding to uniform intervals in logmr/H. In
our fiducial analysis, we calculate instantaneous emission
spectra using intervals of � logmr/H = 0.25, which is of
order Hubble-time separations. At each logmr/H value,
we fit a power-law model F (k/H) / 1/(k/H)q to the in-
stantaneous spectra between an IR cut-o↵ kIR = xIRH

and a UV cut-o↵ kUV = mr/xUV, with the cut-o↵s cho-
sen to be su�ciently far from the physical IR and UV
cut-o↵s. (See the methods for details of how this fit is
performed.) We chose xIR = 50 and xUV = 16 in order
to be su�ciently far into the power law regime of k.
In the top panel of Fig. 3 we illustrate F computed

at logmr/H = 8.75 for our fiducial choice of xIR and
xUV as well as two systematic variations on the choice
of fitting range, extending to xIR = 30 (“Extended IR
Data”) and xUV = 12 (“Extended UV Data”). The best-
fit power-law models are also illustrated. In the bottom
panel, we show the evolution of the index q as a func-
tion of logmr/H, for both our fiducial analysis and for
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Figure 4. Evolution of the axion number density. The
inverse expectation value hH/ki

�1 is computed using the in-
stantaneous axion spectrum F (k/H) by numerically integrat-
ing the spectrum to k/H = xmax = 50 and then analytically
integrating the power law distribution F (x) / x

�q from xmax

to the UV cut-o↵ at k/H ⇠ e
log⇤ for log⇤ ⇡ 65. The data are

illustrated along with their 68% uncertainties. For q > 1 the
expectation value does not strongly depend on the UV cut
o↵ but is instead a function of the e↵ective IR cut-o↵, which
is set by ⇠ such that hH/Ki

�1 = �
p
⇠ for some parameter

�, which we determine by fitting this model to the numerical
data as illustrated here. Smaller values of � correspond to
larger axion number densities and thus large axion DM den-
sities. Here, we illustrate the result for the maximum allowed
q of 1.06, which leads to the smallest � consistent with our
simulation results.

strings ⇠k
�1
IR ; note that this implies that as ⇠(t) grows

with time, the e↵ective IR cut-o↵ moves towards the
UV like

p
⇠ because the strings become more closely

packed together. Let us define a dimensionless coe�-
cient � by the relation h(H/k)2i�1 = � ⇠; a fit of this
functional form to the spectral data leads to � = 840±70
for q = 1.06 (see Supplementary Fig. 9). Note that
smaller values of q lead to larger values of � and that
q = 1.06 is the maximum value of q allowed at 1� from
our analysis. In terms of this coe�cient h(a/fa)2i ⇡
(4⇡/�) logmr/H . 1.1 (for logmr/H . 70), which im-
plies that non-linear number changing processes are at
most marginally relevant. (Non-linear corrections to the
linearized force are at most ⇠15%.) This justifies our use
of number density conservation below in estimating the
DM abundance.

To compute the axion number density we need to com-
pute the expectation value hH/ki over the distribution
F (k/H). Following the justification in the previous para-
graph we may parameterize this expectation value in
terms of the IR cut-o↵ and thus ⇠, hH/ki�1 = �

p
⇠,

for a dimensionless parameter �. In Fig. 4 we illustrate
the hH/ki�1 data, assuming q = 1.06, as a function of
logmr/H along with the best fit model, which leads to
� = 113 ± 7; note that smaller values of q lead to larger
values of �. To compute hH/ki�1 (and also h(H/k)2i�1)
we numerically integrate the spectrum up to k/H =
xmax, with xmax = 50, and then analytically integrate
the power-law functional form F (k/H) / 1/k

q from xmax

to k/H ⇠ e
log⇤ , with log⇤ ⇠ 60 � 70. The axion number

density at the epoch of the QCD phase transition is then,
to leading order in log⇤, n

string
a ⇡ (8⇡f

2
aH/�)

p
⇠⇤ log⇤.

If the spectrum is exactly scale invariant at large k,
such that q = 1, then � / log(mr/H). Defining � =
�1 log(mr/H) in this case we compute �1 = 6.2 ± 0.4.
The axion number density from strings is then n

string
a ⇡

(8⇡f
2
aH/�1)

p
⇠⇤. At 1� we find that q could be as low as

q ⇡ 0.98. For q < 1 the quantity � increases for increasing
UV cut-o↵s like (mr/H)1�q; in particular, for q = 0.98
and logmr/H = 70 we calculate � = 820 ± 50. Thus,
accounting for the uncertainty on q from our simulations
we find that � is in the range � 2 (106, 870).
Let us more precisely define the time t⇤ as the time

when the axion field becomes dynamical, which is when
3H(t⇤) = ma(t⇤), for a time-dependent mass ma(t)
that is increasing rapidly during the QCD phase tran-
sition [30]. The axion string network is observed to col-
lapse around t⇤ (see, e.g., [26]), meaning that at times
t & t⇤ axion number density is conserved. Assuming ax-
ion number density conservation allows us to relate the
present-day DM abundance to the expression for n

string
a

at t⇤ (see Methods):
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Axions produced from domain wall and misalignment dy-
namics during the QCD phase transition provide a sub-
dominant contribution to the DM density [26]: ⌦QCD

a ⇡
0.017h

�2(fa/4.3 · 1010 GeV)1.17. The DM abundance as
measured by the Planck Observatory using the cosmic
microwave background is ⌦DM = (0.12 ± 0.0012)h�2,
with h the Hubble rate scaling factor [37]. Adding in
the contribution from the QCD phase transition ⌦QCD

a ,
and assuming q 2 (0.98, 1.06), we find that the fa that
gives rise to the observed DM abundance should be in the
range fa 2 (3.1 ⇥ 1010, 1.4 ⇥ 1011) GeV (ma 2 (40, 180)
µeV), where for the lower fa bound we have conserva-
tively allowed for the possibility that at t⇤ the remaining
energy density in strings is instantaneously deposited into
axions with spectrum F , raising the string-induced DM
density by a factor of 3/2, though in actuality this contri-
bution is likely smaller since the spectrum shifts towards
the UV as ma(t) increases. If the index is scale invariant
(q = 1), then we predict ma = 65 ± 6 µeV.

DISCUSSION

In this work we provide the largest and highest-
resolution simulation of the axion string network to-date
by making use of an AMR framework that allows us to
resolve the axion string cores while maintaining lower res-
olution over the majority of the simulation volume. Our
AMR approach may be used in the future to simulate the
axion dynamics at the QCD epoch where domain walls
form and the string network collapses [26] and to study

3

Figure 1. Each panel illustrates the string network (yellow strings), domain walls (red mesh), and energy density of the axion
field (blue-white intensity) before (left), during (middle), and after (right) the QCD phase transition (see animation).

by �̃ ⌘ �f
2
a/ma(⌘̂1)2. This parameter can be interpreted

as the squared mass of the radial PQ mode relative to the
axion mass, at conformal time ⌘̂1. In order for excitations
of the radial mode to be well-resolved in our simulation,
we require that the resolution of our simulation �x̄, with
x̄ = a1H1x and x the spatial coordinate, be such that
1/(⌘̂�̃

1/2�x̄) > 1, making simulations for realistic axion
parameters �̃ impossible. We break the relation between
�̃ and fa and consider �̃ = [1024, 1448, 3072, 3584, 5504]
in order to study the impact of this parameter.

We illustrate three important phases of the QCD-
epoch simulation in Fig. 1. The left-most panel is the
initial state discussed previously in the context of the
PQ-epoch simulation final-state. When ma(⌘̂) = 3H(⌘̂)
at ⌘̂ ⇡ 1.22, strings grow longer and become less nu-
merous, with domain walls forming on surfaces bounded
by the strings. This is illustrated in the middle panel,
with red colors indicating domain walls. As the tem-
perature continues to decrease with increasing ⌘̂, strings
and domain walls tighten and decrease in size until they
collapse. By ⌘̂ & 2.0, the network collapses in its en-
tirety. Shortly thereafter, we observe the formation of
oscillons [16, 20, 54]. We note that the oscillon field con-
figuration is relativistic, so that near the origin of the
oscillons the oscillation wavelength is ⇠ma(⌘̂)�1, which
is rapidly shrinking with increasing time. After the zero-
temperature mass is reached, oscillons stop shrinking and
slowly dissipate at varying rates until the full field enters
the linear regime. White regions in the right-most panel
of Fig. 1 denote regions of high axion energy density,
which are mostly inhabited by oscillons.

At the end of the simulation, the field has relaxed
into the linear regime (e.g., axion self-interactions are
unimportant), but the field remains mildly relativistic
because axion radiation is produced during the string-
network collapse and during the oscillon collapse. It is
therefore important to continue evolving the axion field
until a time nearer to matter-radiation equality to al-
low the field to become non-relativistic everywhere and
also to allow the compact but high-momentum overden-
sities to spread out. We perform this evolution analyti-

cally by exactly solving the linear axion equations of mo-
tion in Fourier space. We end this evolution shortly be-
fore matter-radiation equality (T ⇠ keV), at which time
proper velocities have frozen out but local radiation dom-
ination is preserved at all locations in our simulation box
so that gravitational e↵ects remain negligible.
Analysis and results.— We provide Supplementary
Data [55] containing the final state from our most real-
istic QCD-epoch simulation, after having performed the
evolution to near matter-radiation equality. Note that
the axion field after the QCD phase transition is highly
non-Gaussian and phase-correlated at small scales and
cannot accurately be reconstructed from the power spec-
trum. In fact considering that we find large overdensi-
ties � (� ⇠ 10), with � = (⇢ � ⇢̄)/⇢ and ⇢̄ (⇢) the aver-
age (local) DM density, the field could not possibly be
Gaussian at these scales, considering that Gaussian ran-
dom fields have symmetric over and under-densities but
under-densities with � < �1 would have negative DM
density.
We may try to estimate the present-day mass function

by performing a clustering analysis on the final states. In
particular, we expect that the large overdensities will de-
tach from the cosmic expansion, due to reaching locally
matter-radiation equality before the rest of the Universe,
and collapse onto themselves under gravity. Thus by clus-
tering the 3-D spatial energy density distribution from
the simulation slightly before matter-radiation equality
and quantifying the distribution of masses and overden-
sities that we find, we can make predictions for the spec-
trum of minihalo masses and concentrations today.
From the final-state we construct an overdensity field

�(x), and we identify overdensities as closed regions of
positive �. Under this definition 50% of the total mass is
in overdensities. In practice, we identify these regions by
first finding all positive local maxima, then recursively
identifying all neighboring grid sites that are larger than
20% of the corresponding local maxima. This thresh-
old is necessary to have a clear boundary between di↵er-
ent overdensities, though the final mass function is not
strongly dependent on the specific choice of 20%. Addi-
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�1 is computed using the in-
stantaneous axion spectrum F (k/H) by numerically integrat-
ing the spectrum to k/H = xmax = 50 and then analytically
integrating the power law distribution F (x) / x

�q from xmax

to the UV cut-o↵ at k/H ⇠ e
log⇤ for log⇤ ⇡ 65. The data are

illustrated along with their 68% uncertainties. For q > 1 the
expectation value does not strongly depend on the UV cut
o↵ but is instead a function of the e↵ective IR cut-o↵, which
is set by ⇠ such that hH/Ki

�1 = �
p
⇠ for some parameter

�, which we determine by fitting this model to the numerical
data as illustrated here. Smaller values of � correspond to
larger axion number densities and thus large axion DM den-
sities. Here, we illustrate the result for the maximum allowed
q of 1.06, which leads to the smallest � consistent with our
simulation results.

strings ⇠k
�1
IR ; note that this implies that as ⇠(t) grows

with time, the e↵ective IR cut-o↵ moves towards the
UV like

p
⇠ because the strings become more closely

packed together. Let us define a dimensionless coe�-
cient � by the relation h(H/k)2i�1 = � ⇠; a fit of this
functional form to the spectral data leads to � = 840±70
for q = 1.06 (see Supplementary Fig. 9). Note that
smaller values of q lead to larger values of � and that
q = 1.06 is the maximum value of q allowed at 1� from
our analysis. In terms of this coe�cient h(a/fa)2i ⇡
(4⇡/�) logmr/H . 1.1 (for logmr/H . 70), which im-
plies that non-linear number changing processes are at
most marginally relevant. (Non-linear corrections to the
linearized force are at most ⇠15%.) This justifies our use
of number density conservation below in estimating the
DM abundance.

To compute the axion number density we need to com-
pute the expectation value hH/ki over the distribution
F (k/H). Following the justification in the previous para-
graph we may parameterize this expectation value in
terms of the IR cut-o↵ and thus ⇠, hH/ki�1 = �

p
⇠,

for a dimensionless parameter �. In Fig. 4 we illustrate
the hH/ki�1 data, assuming q = 1.06, as a function of
logmr/H along with the best fit model, which leads to
� = 113 ± 7; note that smaller values of q lead to larger
values of �. To compute hH/ki�1 (and also h(H/k)2i�1)
we numerically integrate the spectrum up to k/H =
xmax, with xmax = 50, and then analytically integrate
the power-law functional form F (k/H) / 1/k

q from xmax

to k/H ⇠ e
log⇤ , with log⇤ ⇠ 60 � 70. The axion number

density at the epoch of the QCD phase transition is then,
to leading order in log⇤, n

string
a ⇡ (8⇡f

2
aH/�)

p
⇠⇤ log⇤.

If the spectrum is exactly scale invariant at large k,
such that q = 1, then � / log(mr/H). Defining � =
�1 log(mr/H) in this case we compute �1 = 6.2 ± 0.4.
The axion number density from strings is then n
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a ⇡
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⇠⇤. At 1� we find that q could be as low as

q ⇡ 0.98. For q < 1 the quantity � increases for increasing
UV cut-o↵s like (mr/H)1�q; in particular, for q = 0.98
and logmr/H = 70 we calculate � = 820 ± 50. Thus,
accounting for the uncertainty on q from our simulations
we find that � is in the range � 2 (106, 870).
Let us more precisely define the time t⇤ as the time

when the axion field becomes dynamical, which is when
3H(t⇤) = ma(t⇤), for a time-dependent mass ma(t)
that is increasing rapidly during the QCD phase tran-
sition [30]. The axion string network is observed to col-
lapse around t⇤ (see, e.g., [26]), meaning that at times
t & t⇤ axion number density is conserved. Assuming ax-
ion number density conservation allows us to relate the
present-day DM abundance to the expression for n

string
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at t⇤ (see Methods):
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Axions produced from domain wall and misalignment dy-
namics during the QCD phase transition provide a sub-
dominant contribution to the DM density [26]: ⌦QCD

a ⇡
0.017h

�2(fa/4.3 · 1010 GeV)1.17. The DM abundance as
measured by the Planck Observatory using the cosmic
microwave background is ⌦DM = (0.12 ± 0.0012)h�2,
with h the Hubble rate scaling factor [37]. Adding in
the contribution from the QCD phase transition ⌦QCD

a ,
and assuming q 2 (0.98, 1.06), we find that the fa that
gives rise to the observed DM abundance should be in the
range fa 2 (3.1 ⇥ 1010, 1.4 ⇥ 1011) GeV (ma 2 (40, 180)
µeV), where for the lower fa bound we have conserva-
tively allowed for the possibility that at t⇤ the remaining
energy density in strings is instantaneously deposited into
axions with spectrum F , raising the string-induced DM
density by a factor of 3/2, though in actuality this contri-
bution is likely smaller since the spectrum shifts towards
the UV as ma(t) increases. If the index is scale invariant
(q = 1), then we predict ma = 65 ± 6 µeV.

DISCUSSION

In this work we provide the largest and highest-
resolution simulation of the axion string network to-date
by making use of an AMR framework that allows us to
resolve the axion string cores while maintaining lower res-
olution over the majority of the simulation volume. Our
AMR approach may be used in the future to simulate the
axion dynamics at the QCD epoch where domain walls
form and the string network collapses [26] and to study
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�, which we determine by fitting this model to the numerical
data as illustrated here. Smaller values of � correspond to
larger axion number densities and thus large axion DM den-
sities. Here, we illustrate the result for the maximum allowed
q of 1.06, which leads to the smallest � consistent with our
simulation results.
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IR ; note that this implies that as ⇠(t) grows
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packed together. Let us define a dimensionless coe�-
cient � by the relation h(H/k)2i�1 = � ⇠; a fit of this
functional form to the spectral data leads to � = 840±70
for q = 1.06 (see Supplementary Fig. 9). Note that
smaller values of q lead to larger values of � and that
q = 1.06 is the maximum value of q allowed at 1� from
our analysis. In terms of this coe�cient h(a/fa)2i ⇡
(4⇡/�) logmr/H . 1.1 (for logmr/H . 70), which im-
plies that non-linear number changing processes are at
most marginally relevant. (Non-linear corrections to the
linearized force are at most ⇠15%.) This justifies our use
of number density conservation below in estimating the
DM abundance.

To compute the axion number density we need to com-
pute the expectation value hH/ki over the distribution
F (k/H). Following the justification in the previous para-
graph we may parameterize this expectation value in
terms of the IR cut-o↵ and thus ⇠, hH/ki�1 = �

p
⇠,

for a dimensionless parameter �. In Fig. 4 we illustrate
the hH/ki�1 data, assuming q = 1.06, as a function of
logmr/H along with the best fit model, which leads to
� = 113 ± 7; note that smaller values of q lead to larger
values of �. To compute hH/ki�1 (and also h(H/k)2i�1)
we numerically integrate the spectrum up to k/H =
xmax, with xmax = 50, and then analytically integrate
the power-law functional form F (k/H) / 1/k

q from xmax

to k/H ⇠ e
log⇤ , with log⇤ ⇠ 60 � 70. The axion number

density at the epoch of the QCD phase transition is then,
to leading order in log⇤, n

string
a ⇡ (8⇡f

2
aH/�)

p
⇠⇤ log⇤.

If the spectrum is exactly scale invariant at large k,
such that q = 1, then � / log(mr/H). Defining � =
�1 log(mr/H) in this case we compute �1 = 6.2 ± 0.4.
The axion number density from strings is then n

string
a ⇡

(8⇡f
2
aH/�1)

p
⇠⇤. At 1� we find that q could be as low as

q ⇡ 0.98. For q < 1 the quantity � increases for increasing
UV cut-o↵s like (mr/H)1�q; in particular, for q = 0.98
and logmr/H = 70 we calculate � = 820 ± 50. Thus,
accounting for the uncertainty on q from our simulations
we find that � is in the range � 2 (106, 870).
Let us more precisely define the time t⇤ as the time

when the axion field becomes dynamical, which is when
3H(t⇤) = ma(t⇤), for a time-dependent mass ma(t)
that is increasing rapidly during the QCD phase tran-
sition [30]. The axion string network is observed to col-
lapse around t⇤ (see, e.g., [26]), meaning that at times
t & t⇤ axion number density is conserved. Assuming ax-
ion number density conservation allows us to relate the
present-day DM abundance to the expression for n

string
a

at t⇤ (see Methods):

⌦str
a ⇡ 0.12h

�2

✓
fa

4.3 · 1010GeV

◆1.17 107

�

r
⇠⇤
17

log⇤
70

. (2)

Axions produced from domain wall and misalignment dy-
namics during the QCD phase transition provide a sub-
dominant contribution to the DM density [26]: ⌦QCD

a ⇡
0.017h

�2(fa/4.3 · 1010 GeV)1.17. The DM abundance as
measured by the Planck Observatory using the cosmic
microwave background is ⌦DM = (0.12 ± 0.0012)h�2,
with h the Hubble rate scaling factor [37]. Adding in
the contribution from the QCD phase transition ⌦QCD

a ,
and assuming q 2 (0.98, 1.06), we find that the fa that
gives rise to the observed DM abundance should be in the
range fa 2 (3.1 ⇥ 1010, 1.4 ⇥ 1011) GeV (ma 2 (40, 180)
µeV), where for the lower fa bound we have conserva-
tively allowed for the possibility that at t⇤ the remaining
energy density in strings is instantaneously deposited into
axions with spectrum F , raising the string-induced DM
density by a factor of 3/2, though in actuality this contri-
bution is likely smaller since the spectrum shifts towards
the UV as ma(t) increases. If the index is scale invariant
(q = 1), then we predict ma = 65 ± 6 µeV.

DISCUSSION

In this work we provide the largest and highest-
resolution simulation of the axion string network to-date
by making use of an AMR framework that allows us to
resolve the axion string cores while maintaining lower res-
olution over the majority of the simulation volume. Our
AMR approach may be used in the future to simulate the
axion dynamics at the QCD epoch where domain walls
form and the string network collapses [26] and to study

String production prior to QCD phase 
transition dominates over 
contribution from QCD phase 
transition

B.S. et al., PRL 2020

B.S. et al., Nat. Comm 2022



10°
12

10°
11

10°
10

10°
9

10°
8

10°
7

10°
6

10°
5

10°
4

10°
3

10°
2

10°
1

100

ma [eV]

10°19

10°18

10°17

10°16

10°15

10°14

10°13

10°12

10°11

10°10

10°9

10°8

|g
ag

|[
G

eV
°

1 ]

KSVZ

DFSZ II

SN
1987A

Solar n

Horizontal branch

A
D

M
X

R
B

F+U
F H

A
Y

STA
C

C
A

PP

O
R

G
A

N

Q
U

A
X

CAST

PVLASALPS-I

OSQAR

CROWS

SN1987A

HESSFermiStar

clu
ste

rs

Neutron stars
SHAFT

ABRA
10 cm

Our preferred mass range

40 - 180 μeV2022



What if scaling solution assumption strongly violated?Caveats
1. Maybe we made a mistake (running larger sims 

now and more systematics, *see next slide)


2. PQ symmetry broken before inflation


3. PQ symmetry broken after inflation by non-
standard cosmology (e.g., early matter 
domination)


4. PQ symmetry broken after inflation but domain 
wall number great than one, domain walls 
stable, decay through explicit PQ breaking

Summary: should search over full possible mass range, 
but our work gives a special place to look



What are we doing now?


Perlmutter + GPU acceleration

1. GPU cluster being 
commission now. Already 
5th most powerful 
supercomputer in world

2. our plan: run on few 
thousand GPUs for 
increase in dynamic range



QUESTIONS?
*SPECIAL THANKS TO LEAD AUTHORS 
MALTE BUSCHMANN AND JOSH FOSTER




Systematic Tests: UV cut-off in fitting q
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Supplementary Figure 8. Systematic variations to the instantaneous emission spectrum fitting range. (Top)
Example fits to the instantaneous emission spectrum at log(mr/H) = 8.75 for our three largest choices of the UV cuto↵ for the
fitting range. The data indicated in grey corresponds to the range k 2 (30H, mr/8), with associated fit in black. In red, which
show the fit obtained with the range k 2 (30H, mr/6), which includes the grey and additionally light-red data. In dark blue,
we show the fit obtained with the range k 2 (30H, mr/4), which includes the grey, light-red, and light-blue data. Error bars
have been obtained in a data-driven way from the fits using the procedure described in Methods Sec. I. Visible mismodeling
at large k/H biases the fitted power-law towards artificially larger q. This can be contrasted with the results shown in Fig. 3,
where a more conservative choice of UV cuto↵ does not result in apparent mismodeling at an identical time. (Bottom) The time
evolution of the emission spectrum index for these large choices of UV cuto↵ for the fitting range. A clear trend of increasing
q is obtained for the largest UV cuto↵, suggesting that choices of large UV cuto↵ may result in unphysical growth in the fitted
spectral index. Evidence for the linear growth of q in log(mr/H) was claimed in [1] based on analysis performed with the fitting
range k 2 (30H, mr/4). Error bars correspond to the normally distributed 68% confidence intervals.

Supplementary Figure 9. Evolution of the inverse axion momentum squared over time. The inverse expectation value
h(H/k)2i�1 computed using the axion spectrum F (k/H) by numerically integrating the spectrum to k/H = xmax = 50 and
then analytically integrating the power law distribution F (x) / x

�q from xmax to the UV cut-o↵ at k/H ⇠ e
log⇤ for log⇤ ⇡ 65

(as in Fig. 4). Smaller values of � correspond to larger axion field values. Here, we illustrate the result for the maximum
allowed q of 1.06, which leads to the smallest � consistent with our simulation results. Error bars correspond to the normally
distributed 68% confidence intervals.

Important to be far away from the UV cut-off when fitting 
power-law for q
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Supplementary Figure 3. Distribution of string loop lengths. (Left) The total string length in string loops smaller than
`, ⇠`, versus ` for various values of logmr/H. It is clear that as time progresses the string loop distribution is approaching an
attractor solution. We perform a power-law fit of the form ⇠` = D`

m to the string loop distribution within the attractor regime
(dashed lines). (Right) Distribution of the index m. The result is joint assuming no time dependence finding m = 0.97± 0.03
(gray band). As argued in the text, this attractor solution leads to an axion spectrum with q = 1. Error bars correspond to
the normally distributed 68% confidence intervals.
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Supplementary Figure 4. Fit results for the axion emission spectral evolution over time with varying UV cut-o↵s.

(Left) A comparison of the best-fit values for the index q of string emission at selected times for several choices of the UV
cuto↵ of the fit range. (Right) Same as left but for q1. All index evolution results for these variations are presented in detail
in Tab. II. Note that the “w/o Systematic” data points do not include the systematic nuisance parameter � as given in the
likelihood in (25). Error bars correspond to the normally distributed 68% confidence intervals.

Coe�cient xIR = 30 xIR = 50 xIR = 75 xIR = 100

q1 0.07± 0.07 �0.04± 0.08 �0.06± 0.13 �0.32± 0.26

q0 0.41± 0.58 1.36± 0.69 1.5± 1.12 3.68± 2.21

q
const.
0 0.98± 0.04 1.02± 0.04 1.0± 0.05 1.02± 0.07

Table I. Fit results for the spectral evolution with di↵erent IR cuto↵s. Results of the fits to the spectral evolution
holding all our fiducial analysis choices fixed but for various IR cuto↵s xIR. We provide the fits and uncertainties for the q1

and q0 in the linearly growing index model and the best fit constant for q
const.
0 in the constant index model. Our fiducial choice

of xIR = 50 is shown in bold.

previous 
simulations

our work

Systematic Tests: UV cut-off in fitting q
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Supplementary Figure 10. Dependence of the instantaneous emission spectrum on the simulation resolution. As
in Fig. 3, but comparing fits to the emission spectrum and index evolution for our fiducial simulation output and a lower-
resolution simulation. The two simulations are identical until logmr/H ⇡ 5.3 when the low-resolution simulation stops adding
extra refinement levels. The low-resolution simulation is then run until logmr/H ⇡ 8, when we saturate the mr�x . 1
resolution requirement. (Top) A comparison of the emission spectra and fits for the fiducial simulation (data in grey, fit in
black) and the lower-resolution simulation (data in light red, fit in maroon) at logmr/H ⇡ 7.75, which is the final emission
spectrum obtained in our lower-resolution simulation. The lower-resolution simulation prefers a larger power-law index in the fit,
and the data-driven errors are somewhat larger than in our fiducial simulation. (Bottom) A comparison of the best-fit emission
spectrum index as a function of logmr/H for the fiducial and lower-resolution simulation. Over the range of logmr/H to which
we are sensitive in the lower-resolution simulation, the emission spectra realize larger indices, suggesting that resolution loss
in a uniform resolution simulation that saturates the resolution criteria may lead to a systematic bias towards index growth.
Error bars correspond to the normally distributed 68% confidence intervals.

Coe�cient xUV = 4 xUV = 6 xUV = 8 xUV = 12 xUV = 16 xUV = 24 xUV = 28 xUV = 32

q1 0.17± 0.05 0.08± 0.04 0.04± 0.05 �0.01± 0.06 �0.04± 0.08 0.08± 0.09 0.08± 0.12 �0.2± 0.2

q0 �0.22± 0.37 0.39± 0.32 0.7± 0.41 1.09± 0.51 1.36± 0.69 0.36± 0.78 0.34± 1.05 2.74± 1.68

q
const.
0 1.12± 0.05 1.06± 0.03 1.03± 0.03 1.03± 0.03 1.02± 0.04 1.05± 0.04 1.05± 0.04 1.03± 0.05

Table II. Fit results for the spectral evolution with di↵erent UV cuto↵s. As in Tab. I, but for varying UV cuto↵ xUV

with all other parameters fixed to their fiducial values. Our fiducial choice of xUV = 16 is shown in bold.

Coe�cient � log = 0.125 �log = 0.25 � log = 0.5 � log = log 2

q1 0.0± 0.09 �0.04± 0.08 �0.05± 0.09 �0.1± 0.06

q0 1.02± 0.72 1.36± 0.69 1.4± 0.73 1.84± 0.46

q
const.
0 1.03± 0.04 1.02± 0.04 1.02± 0.03 1.03± 0.01

Table III. Fit results for the spectral evolution with di↵erent steps in log(mr/H). As in Tab. I, but now holding all
our fiducial analysis choices fixed, with the exception of the size of the step in log(mr/H) used in the finite di↵erence for the
calculation of the instantaneous emission spectrum. We vary between � log(mr/H) 2 {0.125, .25, .5, log(2)}, with the log(2)
di↵erences corresponding to a Hubble time spacing. Our fiducial choice of � log(mr/H) = 0.25 is shown in bold.

Systematic Tests: resolving string cores
same simulation without refinement levels: 
resolve core by 1 grid site at the end
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Supplementary Figure 13. Dependence of the number of strings per Hubble on the initial state. The string length
per Hubble volume ⇠ for various di↵erent initial states and simulation setups. L/kmax is a measure for the physical size of the
smallest mode included in the initial state and sets the initial string density. Shown in black is our main simulation result. The
red and blue curves represent simulations with a di↵erent L/kmax ratio in the initial state. Note that we have averaged the
results of the two statistical realizations of each for illustration. These results support the hypothesis that independent of the
initial string density all simulations appear to converge to a common ⇠ scaling with logmr/H after the PQ phase transition.
Error bars correspond to the normally distributed 68% confidence intervals.
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Supplementary Figure 14. Dependence of the instantaneous spectrum on the number of initial mode numbers.

A comparison of axion emission spectra for various di↵erent initial states and simulation setups. (Top Left) The emission
spectrum data (grey) and best-fit power-law model (black) for the average of two simulations performed with L/kmax = 1.8
at log = 6.75. (Bottom Left) The emission spectrum data (grey) and best-fit power-law model (black) for the average of two
simulations performed with L/kmax = 8.8 at log = 6.75. (Right) A comparison of the likelihood profiles for the power-law index
for the two systematic tests of the initial state, averaged over both the two statistical ensembles. We illustrate the likelihood
profiles for the two di↵erent initial mode number cases along with our fiducial simulation result (red). Error bars correspond
to the normally distributed 68% confidence intervals.

Systematic Tests: results appear 
robust to initial conditions 7
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Supplementary Figure 13. Dependence of the number of strings per Hubble on the initial state. The string length
per Hubble volume ⇠ for various di↵erent initial states and simulation setups. L/kmax is a measure for the physical size of the
smallest mode included in the initial state and sets the initial string density. Shown in black is our main simulation result. The
red and blue curves represent simulations with a di↵erent L/kmax ratio in the initial state. Note that we have averaged the
results of the two statistical realizations of each for illustration. These results support the hypothesis that independent of the
initial string density all simulations appear to converge to a common ⇠ scaling with logmr/H after the PQ phase transition.
Error bars correspond to the normally distributed 68% confidence intervals.

Supplementary Figure 14. Dependence of the instantaneous spectrum on the number of initial mode numbers.

A comparison of axion emission spectra for various di↵erent initial states and simulation setups. (Top Left) The emission
spectrum data (grey) and best-fit power-law model (black) for the average of two simulations performed with L/kmax = 1.8
at log = 6.75. (Bottom Left) The emission spectrum data (grey) and best-fit power-law model (black) for the average of two
simulations performed with L/kmax = 8.8 at log = 6.75. (Right) A comparison of the likelihood profiles for the power-law index
for the two systematic tests of the initial state, averaged over both the two statistical ensembles. We illustrate the likelihood
profiles for the two di↵erent initial mode number cases along with our fiducial simulation result (red). Error bars correspond
to the normally distributed 68% confidence intervals.

*performing 
more 
systematic tests 
now
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Coe�cient Eq. 9 Mask Eq. 10 Mask Eq. 11 Mask

q1 �0.04± 0.08 �0.04± 0.08 �0.05± 0.08

q0 1.36± 0.69 1.37± 0.65 1.39± 0.7

q
const.
0 1.02± 0.04 1.02± 0.03 1.02± 0.03

Table IV. Fit results for the spectral evolution with di↵erent string masks. As in Tab. I, but now holding all our
fiducial analysis choices fixed, with the exception of the choice of screening mask. We vary this choice between the screening
functions described in (9), (10), and (11). Our fiducial choice of screening in the form of (9) is shown in bold.
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Supplementary Figure 11. The di↵erence in string lengths per Hubble with and without the AMR framework.

Relative di↵erence between string lengths computed from a simulation with a high-resolution static grid, ⇠static, and an AMR
grid, ⇠AMR, using identical initial states. The di↵erence between both simulations is less than 0.4% and centered around zero
with no observable drift. This provides evidence that the AMR method yields compatible results with the static grid method.
The advantage of AMR, however, is that it is easier to simulate to larger log values.

Supplementary Figure 12. The di↵erence in the instantaneous spectrum with and without the AMR framework.

As in Fig. 11, but for the instantaneous axion emission spectrum F as a function of k/H. The spectrum is computed by
comparing the states between logmr/H = 4.953 and logmr/H = 5.790. The largest k considered in this work, relative to
mr, is k = mr/4, which is indicated in vertical dashed red. Below the k/H = mr/4H, the precision-limited di↵erences in the
emission spectra are below the one-percent level and thus subdominant compared to our statistical uncertainties.

L/kmax 1.8 (1) 1.8 (2) 1.8 (Stacked) 8.8 (1) 8.8 (2) 8.8 (Stacked) 4.8 (Fiducial)

q 0.91± 0.37 0.98± 0.18 0.98± 0.28 0.96± 0.21 1.05± 0.15 1.00± 0.15 0.92± 0.09

Table V. Dependence of the axion radiation spectral index on the initial simulation state. Tabulated results of the
spectral index q for the di↵erent statistical realizations of the simulations using di↵erent initial mode numbers, as described in
Methods Sec. K. We compare the best-fit power-law indices at log = 6.75 for each simulation at L/kmax = 1.8 and L/kmax = 8.8
and their stacked results with our fiducial simulation using L/kmax = 4.8, which all demonstrate mutual compatibility.

Systematic Tests: AMR and static 
lattice simulations give consistent 

results in range of validity 



Axion generated before inflation

Dimensionless constants, cosmology, and other dark matters
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We identify 31 dimensionless physical constants required by particle physics and cosmology, and
emphasize that both microphysical constraints and selection effects might help elucidate their origin.
Axion cosmology provides an instructive example, in which these two kinds of arguments must both be
taken into account, and work well together. If a Peccei-Quinn phase transition occurred before or during
inflation, then the axion dark matter density will vary from place to place with a probability distribution.
By calculating the net dark matter halo formation rate as a function of all four relevant cosmological
parameters and assessing other constraints, we find that this probability distribution, computed at stable
solar systems, is arguably peaked near the observed dark matter density. If cosmologically relevant weakly
interacting massive particle (WIMP) dark matter is discovered, then one naturally expects comparable
densities of WIMPs and axions, making it important to follow up with precision measurements to
determine whether WIMPs account for all of the dark matter or merely part of it.

DOI: 10.1103/PhysRevD.73.023505 PACS numbers: 98.80.Es

I. INTRODUCTION

Although the standard models of particle physics and
cosmology have proven spectacularly successful, they to-
gether require 31 free parameters (Table I). Why we ob-
serve them to have these particular values is an outstanding
question in physics.

A. Dimensionless numbers in physics

This parameter problem can be viewed as the logical
continuation of the age-old reductionist quest for simplic-
ity. Realization that the material world of chemistry and
biology is built up from a modest number of elements
entailed a dramatic simplification. But the observation of
nearly 100 chemical elements, more isotopes, and count-
less excited states eroded this simplicity.

The modern SU!3" # SU!2" # U!1" standard model of
particle physics provides a much more sophisticated re-
duction. Key properties (spin, electroweak and color
charges) of quarks, leptons and gauge bosons appear as
labels describing representations of space-time and inter-
nal symmetry groups. The remaining complexity is en-
coded in 26 dimensionless numbers in the Lagrangian
(Table I).1 All current cosmological observations can be
fit with 5 additional parameters, though it is widely antici-
pated that up to 6 more may be needed to accommodate
more refined observations (Table I).

Table II expresses some common quantities in terms of
these 31 fundamental ones2, with $ denoting cruder ap-

proximations than % . Many other quantities commonly
referred to as parameters or constants (see Table III for a
sample) are not stable characterizations of properties of the
physical world, since they vary markedly with time [7]. For
instance, the baryon density parameter !b, the baryon
density !b, the Hubble parameter h and the cosmic micro-
wave background temperature T all decrease toward zero
as the Universe expands and are, de facto, alternative time
variables.

Our particular choice of parameters in Table I is a
compromise balancing simplicity of expressing the funda-
mental laws (i.e., the Lagrangian of the standard model and
the equations for cosmological evolution) and ease of
measurement. All parameters except "2, !", #b, #c and
#$ are intrinsically dimensionless, and we make these final
five dimensionless by using Planck units (for alternatives,
see [8,9]). Throughout this paper, we use ‘‘extended’’
Planck units defined by c & G & @ & jqej & kB & 1. We
use @ & 1 rather than h & 1 to minimize the number of
!2%" factors elsewhere.

B. The origin of the dimensionless numbers

So why do we observe these 31 parameters to have the
particular values listed in Table I? Interest in that question
has grown with the gradual realization that some of these
parameters appear fine-tuned for life, in the sense that
small relative changes to their values would result in
dramatic qualitative changes that could preclude intelligent
life, and hence the very possibility of reflective observa-
tion. As discussed extensively elsewhere [10–23], there
are four common responses to this realization:

(1) Fluke—Any apparent fine-tuning is a fluke and is
best ignored.

1Here "2 and & are defined so that the Higgs potential is
V!#" & "2j#j2 ' &j#j4.

2The last six entries are mere order-of-magnitude estimates
[5,6]. In the renormalization group approximation for ' in
Table II, only fermions with mass below mZ should be included.
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✓i = ai/fa

fa ⇠ 1015 � 1016 GeV produces too much DM for generic ✓i

Tegmark et al.: too much DM does not allow for life (and us!)

(Other solution high fa: entropy dilution)


