A COMPOSITE SOLUTION TO THE EDGES ANOMALY

Harikrishnan Ramani Stanford Institute for Theoretical Physics

arXiv: 2102.11284 Anubhav Mathur, Surjeet Rajendran, HR

EDGES anomaly & Milli-charge solution

Milli-charge Nuclei

Results & Detection prospects

+ 1000 > z > 15

+ 1000 > z > 15

Cold Epoch between recombination & reionization

New test of ΛCDM

Main way to probe : 21 cm physics

*Art inspired by Hongwan Liu's slides @ TeVPA

2I cm SIGNAL

1109.6012: Pritchard & Loeb

GLOBAL SPECTRUM

Bowman *et. al.* Nature **555**, 67 (2018)

87.5-175 MHz 1710.01101

60-90 MHz 1311.0014

(D)

50-130 MHz 1806.09531

EDGES EXPERIMENT

MIT-Arizona Haystack collaboration Murchison Radio-astronomy Observatory

EDGES RESULT

EDGES RESULT

EDGES RESULT

 ν [MHz]

DARK MATTER EXPLANATION

- + Suggests lower $T_B = 3.26$ K (Λ CDM predicts 8 K)
- Only colder fluid Dark Matter
- Large x-sections required
- Long range interactions (coldest epoch)
- Milli-charge [fractionally charged] dark matter

1802.10094 Munoz, Loeb 1803.03091 Barkana et. al. 1803.02804 Berlin et. al. 1807.11482 Kovetz et. al. 1903.09154 Creque-Sarbinowski et. al.

MILLI-CHARGE EXPLANATION

MILLI-CHARGE EXPLANATION

MILLI-CHARGE EXPLANATION

CONSTRAINTS

 m_{χ} [MeV]

1903.09154 Creque-Sarbinowski et. al. $(Y_{\chi})_{eq}$ $q_{\chi} = 10.0^{-10.1}e$ 10² --- $q_{\chi} = 10.0^{-8.3}e$ 10^{1} $--- q_{\chi} = 10.0^{-6} e$ 10⁰ $= n_{\chi}/s$ 10^{-1} $\succ^{\times 10^{-2}}$ 10^{-3} 10^{-4} 10^{-5} 10^{-4} 10² 10^{-6} 10^{-2} $x = m_{\chi}/T$

- For elementary mCP the same particle is the relevant DoF in
 - Colliders / Beam dumps
 - Stars/SN
 - Early Universe
- mCP are large nuclei?

WAYOUT

+ mCP f

- With mass $m_f \approx \text{meV}$
- Charge $\epsilon_f \lesssim 10^{-14}$ evades
- Stellar constraints
- No chemical equilibrium
- + f has charge g_f under dark photon

- f are dark nucleons [asymmetric]
- + Confine and form at $\Lambda_D \lesssim m_f$
- + Form large nuclei: $m_{\gamma} = Am_f \&$
 - charge $\epsilon_{\chi} = A \epsilon_f$
- $\star \chi$ nuclei poorly constrained & explain EDGES

DARK NULEOSYNTHESIS

+ When $T_D \leq \Lambda_D$, dark nucleosynthesis can begin

• Start with:
$${}^{1}\chi + {}^{1}\chi \rightarrow {}^{2}\chi + \gamma'$$

 ${}^{1}\chi = f$

Further fusion can go through

1406.1171 Krnjaic Sigurdson 1411.3739 Hardy, Lasenby, March-Russell, West

 $\epsilon_{\rm EDGES}$

 ϵ_{f}

Coulomb barrier important for large nuclei

- Gamow limit for small-large : $A_{gamow}^{lim} \approx g_D^{-2}$ [Stronger than stability]
- Rapid growth into nuclei upto this size

• Fix g_D to make $A_{gamow}^{\lim} = -$

Geometric x-section assumed $\frac{1}{\text{meV}^2} \approx 4 \times 10^{-4} \text{cm}^2$

K = kelvin 1 K $\approx 10^{-4}$ eV

SNEAK PEAK

HEATING VS HUBBLE

• Transfer cross-section: $\sigma_T \propto \frac{\epsilon^2}{\mu^2 v^4} \propto \frac{\epsilon^2}{T_D^2}$

Scattering rate with ambient baryons

$$\stackrel{\bullet}{=} \frac{n_b \sigma_T v_{\text{rel}}}{H} \approx 10^{-18} \left(\frac{\epsilon}{10^{-14}}\right)^2 z^{\frac{3}{2}}$$

 $\epsilon_f \approx 10^{-14}$: negligible thermal contact with baryons $\epsilon_{\nu} \approx 10^{-5}$: can be heated up by baryons

 $\frac{3}{7^2} \left(\frac{10 \text{K}}{T_{\text{D}}} \right)^2$

HEATING VS HUBBLE

Hubble Expansion

+ f bath cools, forms nuclei χ

HEATING VS HUBBLE

- $\star \chi$ Nuclei heat up due to the SM, breaks down back to f
- + Balance between Hubble and SM heating, with $T_D \approx \Lambda_D$
- + Only a fraction \mathcal{F}_{nuc} in nuclei

Heating from Baryons

NUCLEATED FRACTION

- + Smaller Λ_D , easier to break
- Fusion delayed for longer
- $\bigstar \mathcal{F}_{\rm nuc} \ll 1$ for longer

 \mathcal{Z}

PARAMETER SPACE

• Stellar constraints on f

$$\bullet \epsilon_f \leq 10^{-14}$$

• Sets indirect constraint on ϵ_{γ}

$$\bullet \ \epsilon_{\chi} \le 10^{-14} \frac{m_{\chi}}{\Lambda_D}$$

 $m_{\chi} [{
m MeV}]$

CONSEQUENCES

- ♦ No direct Collider, Beam Dump, Stellar constraints
- Enlarged Parameter space for milli-charge DM
- In galaxies

$$\frac{1}{2}m_{\chi}v_{\rm vir}^2 \le \Lambda_D \implies m_{\chi}^{\rm gal} \le 86 \ {\rm eV}\frac{\Lambda_D}{1{\rm K}}$$

Coherent enhancement only when

$$q \leq R_{\chi}^{-1} \approx \Lambda_D / A^{\frac{1}{3}}$$

train M

shielded detector

LOW q DIRECT DETECTION

- Exciting anomaly in 21cm physics
- Elementary mCPs solve anomaly but in severe tension with cosmology
- mCP nuclei of similar charge and mass evade most constraints and explain EDGES
- + "Thermostat" phase around $T_D \approx \Lambda_D$
- Expanded parameter space for viable DM albeit at low momentum

