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Exclusive Processes

e Tremendous progress in the understanding of exclusive scattering
processes: analytic structure, multi-loop perturbative data,
amplituhedron, S-matrix bootstrap,...

o [pb]
i

LHepp \5= 13T/

W 0aa 0053610

e Practical Outcome: Ability to accurately describe complicated SM
scattering processes.
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The High Multiplicity Regime

e A complementary regime: high multiplicity
e Collisions with I >> mgap
e Conformal Field Theories

e Good observables are correlations in fluxes at (null) infinity.
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Motivation

e How can we characterize a theory using asymptotic data?

e Theoretical motivation:
e What is the space of observables at null infinity?
e How are they related to (C)FT data?
e How do we constrain theories in the absence of S-matrix i
and/ or local ops (e.g. CFT coupled to gravity)

e Phenomenological motivation:

e Can we relate asymptotic measurements to parameters of the
underlying theory? (couplings, transport coefficients, ....)

o Can we identify universal features
that can be computed to high precision?

o Wealth of collider data provides a practical testing ground.
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Jet Substructure: Searches

e Jet Substructure uses the internal structure of jets to provide

qualitatively new ways to study physics at the LHC.
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e |ts introduction in 2008 by Butterworth, Davison, Rubin and Salam,
along with anti-k7 by Cacciari, Soyez, Salam, and the starting of the
LHC, reinvigorated the study of jets in QCD.
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]
Jet Substructure: Quantum Field Theory

e Beyond searching for new physics, much more subtle questions about
QCD are imprinted in collider energy flux:

Te erature

Baryon Density
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Energy Correlators in Data

e Progress bridging theory and experiment across collider systems!

JETS ELUCIDATEHOW (PARTOsN*S STRONG INTERACTIONS.
EVOLVE UNTO HADRONS Measuring energy correlators inside jets
3November 2023
1S Protiminary T

8o o e
= e
- B 3f
I Error band: - =
o Shape only.

Normalized EEC

October 2024 8 /56



Energy Correlators in Data

e Progress bridging theory and experiment across collider systems!

ALEPHe's, 5 =91.2 GeV, Preliminary

—— Archived MC
Fully Corrected Data

Collinear

2

1-10° 1-10¢
2= (- cos(e)r2

170 nb” PoPb (5.02 TeV) + 302 pb” pp (5.02 TeV)

CMS preiiminary 120 <jet p, <140 GeV/ +
1.5 anti-k, R=04
b i<16
bol
Htee, PS> 1GeV, n=t i
0 N
ale - o
o 1 A
o - o
55 PbPDb 0-10%
0.5¢
I I
102 107
Ar

BAPTS

* Data
| S NNLL o NP arg(m,)=0118

p Tie': 846-1101 GeV
+‘;

-*
7]

—
e

CMS

Q 10!

ALICE Preliminary
p-Pb and pp |5, = 502 TeV
12| antioky ch ets, A=04,20< p** <40 Gevic |
allpais, p'*> 1.0 GeVic
-
-
-
1 ~—
-
-
+ + & ey
e -

— CGC, sat. scale2 |
CGC, sat. scale 6
CGC, sat. scale 12
I

10?

107

RL

October 2024

9 /56



N
Outline

e Decoding Energy Flux

e Energy Correlators:
Scaling and Multi-Point Correlators

e Imaging Intrinsic and
Emergent Scales of QCD
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Decoding Energy Flux
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Correlation Functions

¢ In condensed matter physics or cosmology we decode the underlying
dynamics using correlation functions.

13.8 billion years

RS |

b
380 000 years

. -

e Can we achieve a similarly coherent picture of collider physics?
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Defining the Problem

e What is a detector?

[Caron Huot, Kologlu, Kravchuk, Meltzer, Simmons Duffin]

e To be able to understand subtle signals in energy flux, we must
understand what a detector is in Quantum Field Theory.
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-
Calorimeter Cells in Field Theory

o Calorimeter cells can be given a field theoretic definition in terms of

hght_ ray Opel’atorS Hofman, Maldacena], [Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov]
. Korchemsky, Sterman]

Ore, Sterman]

Basham, Brown, Ellis, Love]

oo}

E(fi) = lim r° /dt n'Toq(t, )

00

0

e From the perspective of QFT, jet substructure is the study of
correlation functions of energy flow operators.
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Energy Correlators

e Correlation functions (0|OTE(7;) - - - £(7i})O|0) take an interesting
intermediate position between amplitudes and correlation functions.

Energy Correlation

Amplitudes Corrglators Functions
5 K3

Boundary
Observable \/

IR Finite
e Provide an interesting example of observables that are well defined at
weak coupling, strong coupling, in a CFT, with gravity, ....
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Energy Correlators:
Scaling and Multi-Point Correlators
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Scaling Behavior J
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-
Scaling Behavior in QFT

e Scaling behavior in Euclidean regime well understood.

A-point of Helium
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-
The OPE Limit of Lightray Operators

e Energy flow operators admit a Lorentzian OPE: “the lightray OPE”

E()E(Rg) ~ > 07405 (n)

[Hofman, Maldacena]
[Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]
QCD: [Dixon, Moult, Zhu]

e Predicts universal scaling behavior in correlations of energy flux at

energies E’ >> AQCD . See early work by [Konishi, Ukawa, Veneziano]
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Scaling Behavior in Jets

e Scaling measured inside jets by STAR, ALICE and CMS from 15 GeV
to 1784 GeV:
An experimental realization of the detector OPE!
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o Can we accurately extract anomalous exponents of different
detectors?
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The Spectrum of a Jet

e The light-ray OPE predicts that the N-point correlators develop an
anomalous scaling that depends on .

3.0
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e Directly probes the spectrum of (twist-2) lightray
operators from asymptotic energy flux.
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Anomalous Scaling

e Universal quantity in complicated
hadronic environment.
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e Uses scaling anomalous dimensions at three-loop order.
e Beautiful quantitative test of QFT!
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The Strong Coupling

e Use scaling to extract value of the
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Higher Point Functions in Energy Flux J

. BAPTS T



Multipoint Correlators

e Higher-point correlators probe detailed aspects of the underlying
microscopic interactions. e.g. CMB three-point functions allow to
distinguish models of inflation.

Slow roll 1

05

Flxy,x3)

e What is the structure of higher-point functions of energy flux?
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Multipoint Correlators

e The only explicit results for correlators with N > 2 were the
remarkable strong coupling results of Hofman and Maldacena:

eim)---£) = (L) |1+ 3 S )2 - e

i<j

)\3/2[ Z (73.75) (7. 7k ) (7. 70k) + -+ -] + 0o(A72)
i<j<k

e The wealth of techniques developed to compute perturbative
scattering amplitudes can be applied to multi-point correlators at
weak coupling.

E(1) g E(72) Z

(i) Gi(z,2)

. BAPTS Qe o B



Correlators in Perturbation Theory

e Two approaches to calculate energy correlators:
@ Light transforming N-point functions of stress tensors:

0|OTT - - TO0) — (0|OTE(7y) - - - E(7iy,) O)0)

Two Point NLO in A/ = 4: [Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov]
Two Point NNLO in N/ = 4: [Henn, Sokatchev, Yan, Zhiboedov]
LO Charge-Charge Correlator in QCD: [Chicherin, Henn, Sokatchev, Yan]

@® Perturbative phase space integrals using (squared) form factors:

W Z /doH (it — i, /PY))

Two Point LO in QCD: [Basham, Ellis, Brown, Love]

Two Point NLO in QCD: [Dixon, Luo, Shtabovenko, Yang, Zhu]

Three Point Collinear LO in QCD: [Chen, Luo, Moult, Yang, Zhang, Zhu]
Three Point General Angle LO in ' = 4: [Yan, Zhang]

Three Point General Angle LO in QCD: [Yang, Zhang]

Four Point Collinear LO in A/ = 4: [Chicherin, Moult, Sokatchev, Yan, Zhu]
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Correlators in Perturbation Theory

e For generic angles, the correlator depends on the
. 1—cos 0;;
cross ratios (;; = 5, and the source.

e In the collinear (OPE) limit, (;; — 0, it becomes a
function of 2(IN — 2) variables that is independent of the source.

e The LO contribution to the N-point function is given by a finite
integral in (N — 1) dimensional projective space of the universal
splitting functions

ENC COH dxl dmN o1 — Z x;) (zq - PFJ_))N

2=

2=z

e This limit can be physically measured
inside high energy jets at the LHC.
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Three-Point Correlator at Weak Coupling

e First non-trivial correlator: tree level three-point correlator in the
CO”inear limit G(Z, 2) [Chen, Luo, Moult, Yang, Zhang, Zhu]

e Turns out to have an elegant perturbative structure. e.g. in N =4

1+u

2uv

B(x)+ (2= 2)2(u+ v+ u? 4+ 0% + uv + w?)
4u2e?

D;(17Z)+(uf'u)(’u,ﬁ»w)D;_ (L)

2uv z—1

_lt+u+tw 1+

(1+G) — 5 log(u) -

2uv
1+u?+0?)
2uv
(v=1)(v+1)
2u?v

Gr=4(2)

2uv log(v)

— (I +u+v)(0y+ 0,)P(2) + (

n (u 72125}1; +1)

D(z)

D (2) +

e where ® and D; are

D(z) = 2 E B <Li2(z) — Lip(2) + % (log(1 — 2z) —log(1 — 2)) 10g(z§)>

, 1
Dy (2) = Lia(1 — |2) + 5 log(l1 — 2|)log(|21?)

e Provides important perturbative data for the development of the
lightray OPE.
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Shape Dependence of Non-Gaussianities

e Multipoint correlators can be directly measured in high energy jets:
Simple analytic functions for the actual measured observable!

¢ Non-Gaussianities inside high energy jets at the LHC:

CMS Open Data, Ry, € (0.3, 0.4) LL + LO prediction, Ry = 0.35
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Fou r POI nt Correlator [Chicherin, Moult, Sokatchev, Yan, Zhu]

e Simple structure makes energy correlators a nice playground for
exploration of physical observables in perturbation theory.

e Four point correlator computed in A/ = 4 SYM by direct integration
in parameter space, using simple form of 1 — 4 splitting function.

COH d:cl dacN o(1— sz) - fi)N

&
(=

e Compact result expressed in terms of weight three
polylogarithms: much structure still to be explored.

=

¥

e Would be interesting to extend to QCD using known Kai Yan
1 — 4 Sp|lttlng funCtionS. [Del Duca, Duhr, Haindl, Lazopoulos, Michel]

e Can one push to higher points or make general statements?.
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The Four Point Correlator

o Intricate view of correlations of energy flow. Access to OPE limits,
spinning operators, ...

1

7 7
L7 7F7
L
LA TF
- LRSS
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The Four Point Correlator

Experimental tour de force to enable precision measurements of higher
point correlators. p; > 100 GeV

0.1<R, <0.2

Dipole

Thanks to Simon Rothman and Phil Harris + Kyle Lee
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The Four Point Correlator

Experimental tour de force to enable precision measurements of higher
point correlators.

p; > 100 GeV
01<R. <0.2 Tee

Thanks to Simon Rothman and Phil Harris + Kyle Lee
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|
Multi-point Correlators at Weak Coupling

e Has motivated the theoretical exploration of higher point correlators.

e Integrand up to 11 points in N' = 4 super Yang-Mills.

e Hints of elliptic and Calabi-Yau structures in integrals for 5 points and
[He, Jiang, Yang, Zhang]

beyond.

e Nice interplay between theory and experiment.
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Structure in Perturbative Gravity

[Herrmann, Kologlu, Moult]

e Also have an interesting structure in perturbative quantum gravity.

e Currently investigating higher point correlators...
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Imaging Intrinsic and Emergent Scales of QCD |
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LHC Targets:

e Measurements on more complicated states:
e Imaging the Quark Gluon Plasma

e Weighing the Top Quark

T(¢,CssCa = m?/Ph )
x[es(1—¢s)*
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Resolving the Scales of the QGP

[Andres, Dominguez, Holguin, Kunnawalkam Elayavalli, Marquet, Moult]
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Quark Gluon Plasma

e Heavy ion collisions provide an example of an extremely complicated
asymptotic state, where we do not understand the microscopic
dynamics that created it.

o Nice interplay between pp and heavy ion jet substructure
communities.
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Correlators in the QGP

o QGP scales cleanly imprinted in two-point correlation.
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[CMS-PAS-HIN-23-004]

[Andres, Dominguez, Holguin, Kunnawalkam Elayavalli, Marquet, Moult]
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]
Correlators in the QGP

e Large angle enhancement visible in ratio.

120 < pr < 140GeV, Centrality dependence
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]
Correlators in the QGP

e Theory calculations in heavy ion extremely complicated, and require
large computing power.
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e Can we identify robust scalings?
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]
Correlators in the QGP

e Lightray OPE allows us to reduce the transverse structure of energy
correlator to well defined scaling laws, with coefficients given by
matrix elements of lightray operators in nuclear states:
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]
Correlators in the QGP

e An old argument of Sterman and Qiu shows that matrix elements of
higher twist operators are enhanced in nuclear medium.

e Predicts that the result in Pb-Pb and p-Pb should in fact give a
simple scaling law.

<\I/Qgp|g(n1)£(n2)|‘1/Qgp> _ (‘IIQGPl @E—J 23]""(0)[‘7 3]+ ‘\IIQGP>
(Wpp|E(n1)€(n2)[Vpp) B

- (‘I’QGP‘@T':Q]M’QGP) 02 2 (Yoer|0Y= [ Woap)
3 3]
(Wpp 072 W) (Wpp| 075 W)
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]
Correlators in the QGP

e Simple OPE picture provides excellent description of CMS data.

T — maEc/c,
05 i RO tas R
ozl T OPE fit B 03 ==015, 75,=-004, 2 ,=124
pr=[120,140] GeV, Centrality =[0,10]%
0.01 0.05 0.10
R

e Allows us to use jet substructure to study matrix elements of higher
twist operators, and their evolution.
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]
Resolving the Scales of the QGP

e Higher point correlators allow us to probe the “shape” of medium
modifications as a function of scale:

Hadrons, Jet)’s  /Jet"* Full anti-k, jets, R = 0.8
Hybrid Model (Inclusive Sample) 200 GeV/¢ <p,, <360 GeVic
n=1,02<A <03

Hybrid Model (Inclusive Sample)
Hadrons, n =1

Full anti-ky jets, R=0.8

260 GeV/c < p, , <360 GeVic

Normalized EEC

-g- Vacuum Jet
o Jet + wake
—+-Jet + no wake

10? 107

[Bossi, He, Kudinoor, Moult, Pablos, Rai, Rajagopal]
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]
Resolving the Scales of the QGP

e Higher point correlators allow us to probe the “shape” of medium
modifications as a function of scale:

Hadrons, Jet)’s  /Jet"* Full anti-k, jets, R = 0.8
Hybrid Model (Inclusive Sample) 280 GeV/¢ <p,, <360 GeVic
n=1,03<R <04

Hybrid Model (inclusive Sample)
Hadrons, n =1

Full anti-k, jets, R = 0.8

260 GeV/c < p, < 360 GeVi/c

Normalized EEC

-g- Vacuum Jet
o Jet + wake.
& Jet + no wake

ol o
r e o
107 -
£ I I |
10? 107 1
R

[Bossi, He, Kudinoor, Moult, Pablos, Rai, Rajagopal]
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]
Resolving the Scales of the QGP

e Higher point correlators allow us to probe the “shape” of medium
modifications as a function of scale:

Hadrons, Jet)’s  /Jet"* Full anti-k, jets, R = 0.8
Hybrid Model (Inclusive Sample) 200 GeV/¢ <p, <360 GeVic
n=1,05<R <06

Hybrid Model (Inclusive Sample)
Hadrons,n=1
Full anti-k, jets, R=0.8
e 260 GeV/c < p, <360 GeV/c
Ty -5 Vacuum Jet

- Jet + wake

ES & Jet + no wake

Normalized EEC

10°? 107" 1

[Bossi, He, Kudinoor, Moult, Pablos, Rai, Rajagopal]
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]
Resolving the Scales of the QGP

e Higher point correlators allow us to probe the “shape” of medium
modifications as a function of scale:
Hadrons, Jet)’s  /Jet"* Full anti-k, jets, A =

08
Hybrid Model (Inclusive Sample) 260 GeV/c<p, <360 GeVic
n=1,06<A, <07

Hybrid Model (Inclusive Sample)
Hadrons, n =1
Full anti-k, jets, R = 0.8
——— 260 GeV/c < p, <360 GeV/c
T, -a- Vacuum Jet

o Jet + wake

ES & Jet + no wake

Normalized EEC

i

i

10°

10°? 107" 1

[Bossi, He, Kudinoor, Moult, Pablos, Rai, Rajagopal]
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Weighing the Top Quark

pp — tX (13 TeV) [T (¢ ¢s5Ca = M /PF j0r)
Pr,jet € [500,525] GeV 1™ 1/4

' X 1-—
Pythia8.3 To-o. ~ Toee [CS( CS)}

2
my

. BAPTS
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-
Weighing the Top Quark

e The top quark mass is one of the most
important parameters of the SM. e.g.
electroweak vacuum stability/criticality, Il
electroweak fits, etc. ‘

17| 2 \
- \

e Need simple observables with top mass ety
sensitivity that can be computed from first s
principles field theory. ) .
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-
Weighing the Top Quark

e Extract the mass ratio between the W and top quark from the shape

of the three-point correlator.

PP EX(13TeV) TGy Conta = m 5 )

Pr,jot € [500,525] GeV i~ o
HEN X 1

Pythia8.3 1 @ i [¢s(1=¢s)]

[Holguin, Moult, Pathak, Procura, Schofbeck, Schwarz]
See also: [Xiao, Ye, Zhu]
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e Motivates precision calculations of correlators on top decays.
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Weighing the Top Quark

¢ Initial investigations illustrate has minor sensitivity to experimental
systematics, and global event: successfully isolates dynamics of top
decay.
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o Motivates precision calculations of correlators on top decays, and
further experimental investigation.
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Summary

o Significant recent progress in the theoretical
characterization of asymptotic energy flux.

. . . 168 o
e Scaling and shape dependence of multi-point ;| Pr:8461101Gev 4
. ("/A\l * Data £y
energy correlators can be directly measured at :NE 14 L S i o
O 134 — 4
the LHC: How can we best use them? Sl T s ]
1.1 ) _
g 10
1.70 nb” PbPb (5.02 TeV) + 302 pb”" pp (5.02 TeV)
i . CMS Preliminary |zn<|-«p(<uoesv l
e Provides the opportunity to use theoretically 8 e §
. . p$">IGeV,l|=I
beautiful objects to learn about the real world. g - y
& == PbPb 0-10% *"w“’
0.5
16‘2 16-‘
Ar

. BAPTS Qe D B






