Hunting for Heavy Winos in the Galactic Center with Effective Field Theory

Ian Moult Berkeley/LBL

arXiv:1712.07656, 1808,04388, 1808.08956

with M. Baumgart, T. Cohen, N. Rodd, T. Slatyer, M. Solon, I. Stewart, V. Vaidya,

1 / 44

TeV Scale DM

- Weakly Interacting Massive Particles (WIMPs) are economic and simple models.
 - Wino: 3TeV (This talk)
 - Higgsino: 1TeV
 - Minimal DM SU(2) Quintuplet: 10TeV
- Difficult to probe directly.

Monojet Wino Limit

Summary of Direct Detection Limits

Indirect Detection

High mass DM can be probed through annihilation to photons!

Indirect Detection

Air Shower

HESS

- \bullet Can probe DM up to 20 100 TeV scale.
- Gamma ray line provides clean signal.

Indirect Detection

Line searches put strong constraints on TeV scale DM.

- For uncored profiles, Thermal Wino well excluded.
- Large number of current and future experiments will push this further.

BAPTS 2018 October 12, 2018 4 / 44

Coring

Limits can be evaded by coring.

- We are now in a regime where limits probe core sizes comparable with simulation/ observational constraints
 - ⇒ factors of 5 matter for interpretation.
- Can we conclusively exclude the thermal wino (Higgsino)?

BAPTS 2018 October 12, 2018 5 / 44

Multiple Scales

- Particle physics predictions complicated by the presence of hierarchical scales: m_W « M_χ.
- Line cross section requires all orders resummation:
 - Sommerfeld Effect: $(\alpha_w M_\chi/m_w)^k$
 - Sudakov double logarithms: $\alpha_W \log^2(M_\chi/m_W)$

Resummed Line Spectrum

 Line cross section successfully analyzed using EFT techniques. [Ovanesyan, Slatyer, Stewart] [Bauer, Cohen, Hill, Solon]

Indirect Detection

- In reality, the situation is not so simple!
- Experiments cannot fully constrain recoiling state.

- Realistic prediction for experiment requires energy spectrum
 significantly more involved field theory setup.
 - ◆ロト ◆個 ▶ ◆ 重 ト ◆ 重 ・ 夕 ○ ○

BAPTS 2018 October 12, 2018 7 / 44

Outline

• Kinematics and Effective Field Theories

• H.E.S.S. Forecast and Core Constraints

Kinematics and Effective Field Theories

Kinematics

- We are interested in $\chi \bar{\chi} \to \gamma + X$
- X is final state other than observed photon.

• Use a dimensionless variable z to characterize the final state.

$$E_{\gamma} = M_{\chi} z$$
, $m_X^2 = 4 M_{\chi}^2 (1 - z)$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

BAPTS 2018 October 12, 2018 10 / 44

Three Different Regimes

• z measures the additional radiation in the final state.

• Exclusive and Inclusive cases considered in literature.

◆ロト ◆問ト ◆言ト ◆言ト · 言 · からぐ

BAPTS 2018 October 12, 2018 11 / 44

HESS Resolution

- HESS performs line searches, but has a finite resolution.
- To constrain to a single recoiling Z at $M_\chi=500{\rm GeV}$ (10 TeV) would require $z\simeq0.99(0.9999)$
- Resolution of HESS in these energies is equivalent to z = 0.83 0.89

• Recoiling final state is a jet!

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

BAPTS 2018 October 12, 2018 12 / 44

Soft and Collinear Radiation

- For HESS resolution, $(1-z) \ll 1 \implies$ mass of unobserved final state is small.
- To have small invariant mass, $m_X^2 = 4 M_\chi^2 (1-z)$, the final state X can consist of radiation that is either
 - Collinear: $m_X^2 \sim M_\chi^2 \theta^2 \equiv 4 M_\chi^2 (1-z)$ $\implies \theta \sim \sqrt{1-z}$

- Soft: $m_X^2 \sim M_\chi E_s \equiv M_\chi^2 (1-z)$ $\implies \frac{E_s}{M_\chi} \sim (1-z)$
- HESS resolution forces recoiling state into soft and collinear limits.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 釣९○

BAPTS 2018

October 12, 2018

Jets

- Heavy WIMP annihilation produces jets.
- A jet is a spray of collimated (electroweak) radiation.
- Perturbative Sudakov double logarithms appear: $\alpha_W \log^2(1-z)$

Electroweak Jet from WIMP Annihilation

Spectrum

- Need to be resummed to all orders to understand energy spectrum.
- Previous approaches only have $\delta(1-z)$.

BAPTS 2018 October 12, 2018 14 / 44

Summary of Scales

• Indirect detection is a complicated multi-scale problem:

- Sommerfeld: $(\alpha_W M_\chi/m_W)^k$
- Electroweak: $\alpha_W \log^2(M_\chi/m_W)$
- Resolution: $\alpha_W \log^2(1-z)$

• Ideal for Effective Field Theory and Factorization!

<ロ > < 回 > < 回 > < 直 > < 直 >) 直 の < ②

BAPTS 2018

Summary of Scales

Are all numerically large effects

- Sommerfeld: $(\alpha_W M_\chi/m_W)^k$
- Electroweak: $\alpha_W \log^2(M_\chi/m_W)$
- Resolution: $\alpha_W \log^2(1-z)$

- Want to understand how to disentangle and incorporate at the level of the spectrum.
- Once perturbative series has been reorganized (resummed), good behavior of electroweak perturbation theory will be restored.

BAPTS 2018 October 12, 2018 16 / 44

Effective Field Theory

- Approach of Effective Field Theory:
 - Focus on relevant degrees of freedom.
 - Integrate out irrelevant degrees of freedom.

- Effective theory for long wavelength dynamics of soft and collinear radiation in the presence of a hard scattering source
 - $\implies \mathsf{Soft}\ \mathsf{Collinear}\ \mathsf{Effective}\ \mathsf{Theory}\quad_{[\mathsf{Bauer},\ \mathsf{Fleming},\ \mathsf{Pirjol},\ \mathsf{Stewart}]}$
 - Separate fields for collinear $\mathcal{B}^{\mu}_{n_i\perp}$ and soft A^{μ}_{us} gauge bosons.
- Extended to Electroweak theory [Chiu, Fuhrer, Kelley, Manohar]

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

BAPTS 2018 October 12, 2018 17 / 44

Soft Collinear Effective Theory

[Bauer, Fleming, Pirjol, Stewart]

Hard scattering is described by operators in EFT

 Long wavelength dynamics of soft and collinear radiation described by Lagrangian

 $\mathcal{L}_{\mathsf{dyn}}$:

Field Redefinitions and Wilson Lines

[Bauer, Fleming, Pirjol, Stewart]

 Leading power soft-collinear interactions can be decoupled by field redefinition:

$$\mathcal{B}_{n\perp}^{a\mu} \to \mathcal{Y}_{n}^{ab} \mathcal{B}_{n\perp}^{b\mu}, \qquad \chi_{n}^{\alpha} \to Y_{n}^{\alpha\beta} \chi_{n}^{\beta}$$

$$Y_{n}^{(r)}(x) = \mathbf{P} \exp \left[ig \int_{0}^{\infty} ds \, n \cdot A_{us}^{a}(x+sn) T_{(r)}^{a} \right]$$

- Soft dynamics described by matrix elements of Wilson lines.
- Lagrangian and States factorize:

$$\mathcal{L}^{(0)} = \mathcal{L}_n^{(0)} + \mathcal{L}_s^{(0)} \implies |X\rangle = |X_n\rangle |X_s\rangle = 0$$

BAPTS 2018 October 12, 2018

19 / 44

Factorization

[Bauer, Fleming, Pirjol, Stewart]

 After decoupling interactions, can write cross section as a product of hard, collinear and soft matrix elements

$$\frac{d\sigma}{dz} = H(Q^2) \int dz_J dz_S \delta(z - z_J - z_S) J(z_J) S(z_S)$$

Factorization and Renormalization

 Factorization allows cross section to be written as a product (convolution) of simple single scale functions:

$$\frac{d\sigma}{dz} = H(Q^2) \int dz_J dz_S \delta(z - z_J - z_S) J(z_J) S(z_S)$$

- Each function can be easily computed by itself (often in an expanded limit).
- All logarithms predicted by renormalization group evolution:

$$rac{\mathsf{d}}{\mathsf{d}\log\mu}F(z;\mu)=\int\mathsf{d}z'\,\gamma_F^\mu(z-z';\mu)F(z';\mu)$$

• Offers powerful approach to multi-scale problems

←□▶ ←□▶ ←□▶ ←□▶ □ ● ●

21 / 44

BAPTS 2018 October 12, 2018

Aside: Natural Scales

• All single scale functions have a natural μ scale at which all logarithms in their expansion vanish. e.g.

$$F(\mu; M_{\chi}) = 1 - \alpha_W \log^2\left(\frac{\mu}{M_{\chi}}\right) + c_1 \alpha_W + \mathcal{O}(\alpha_W^2)$$

• At the natural scale, the function is a pure expansion in α_W :

$$F(\mu = M_{\chi}; M_{\chi}) = 1 + c_1 \alpha_W + \mathcal{O}(\alpha_W^2)$$

- Scalings we worked out earlier are natural scalings:
 - Hard: $\mu \sim M_{\gamma}$
 - Jet: $\mu \sim M_{\gamma} \sqrt{1-z}$
 - Soft: $\mu \sim M_{\gamma}(1-z)$

- $\mu \frac{d}{d\mu} F = -\alpha_W \log \left(\frac{\mu^2}{(M_*)^2} \right) F$ $\implies F(m_W) = \exp\left(-\alpha_W \log^2\left(\frac{m_W}{M}\right)\right) F(M_\chi)$
- Logarithms which invalidate the perturbative expansion are resummed to all orders by RG evolution.

BAPTS 2018 22 / 44

A Complication

- Standard SCET can deal with a single measurement.
- Two cases considered previously in literature:
 - Constraint on massless final state radiation.

Virtual corrections for massive gauge bosons.

[Chiu, Fuhrer, Kelley, Manohar]

- Our situation is more complicated: Constraint on massive final state radiation.
- Must simultaneously consider two measurements: (1-z) and m_W .

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀♡

BAPTS 2018 October 12, 2018 23 / 44

Borrowing from Jet Substructure

- Must extend SCET to deal with multiple measurements.
- Similar problem has appeared in jet substructure.

• Can apply recent advances in field theories for jet substructure!

BAPTS 2018 October 12, 2018 24 / 44

Non-Relativistic DM EFT

- Incoming DM particles are slow, $v \le 10^{-3}$.
- Describe interactions using non-relativistic EFT.
- Interactions with soft radiation decoupled via Wilson lines.
- Leads to standard non-relativistic Lagrangian

$$\mathcal{L}_{\text{NRDM}}^{(0)} = \chi_{\nu}^{\dagger} \left(i \, \nu \cdot \partial + \frac{\vec{\nabla}^2}{2 \, M_{\chi}} \right) \chi_{\nu} + \hat{V}[\chi_{\nu}, \chi_{\nu}^{\dagger}](m_{W,Z})$$

• Sommerfeld effect described by matrix elements:

$$\left\langle 0 \left| \chi_{v}^{3 T} i \sigma_{2} \chi_{v}^{3} \right| \left(\chi^{0} \chi^{0} \right)_{S} \right\rangle = 4 \sqrt{2} M_{\chi} s_{00}, \quad \left\langle \chi_{0}^{0} \times \chi_{0}^{0} \times \chi_{0}^{0} \right\rangle$$

$$\left\langle 0 \left| \chi_{v}^{+ T} i \sigma_{2} \chi_{v}^{-} \right| \left(\chi^{0} \chi^{0} \right)_{S} \right\rangle = 4 M_{\chi} s_{0\pm}$$

$$\left\langle \chi_{0}^{0} \times \chi_{0}^{0} \times \chi_{0}^{0} \right| \left(\chi^{0} \chi^{0} \right)_{S} \right\rangle = 4 M_{\chi} s_{0\pm}$$

- Decouples into a multiplicative factor.
- Resonances when $\alpha_W M_{\gamma} \sim n^2 m_W$

5

25 / 44

 m_{ν} (TeV

 $\sigma_{\gamma\gamma+Z\gamma/2} \ v \ (\mathrm{cm}^3/\mathrm{s})$ or $\sigma_{\gamma\gamma}$ or $\sigma_{\gamma\gamma}$

0.1

Factorization Formula for the Endpoint Region

The Factorization Formula

• Full factorization derived through a multistage matching procedure.

• Provides an all orders description, and operator definitions $\frac{d\hat{\sigma}^{LL}}{dz} = H(M_{\chi}, \mu) J_{\gamma}(m_{w}, \mu, \nu) J_{\bar{n}}(m_{w}, \mu, \nu) S(m_{w}, \mu, \nu) \times$

$$H_{J_{\bar{n}}}(M_{\chi}, 1-z, \mu) \otimes H_{S}(M_{\chi}, 1-z, \mu) \otimes C_{S}(M_{\chi}, 1-z, m_{w}, \mu, \nu)$$

BAPTS 2018 October 12, 2018 27 / 44

The Factorization Formula

$$\begin{split} \frac{\mathrm{d}\hat{\sigma}^{LL}}{\mathrm{d}z} = & \; H(M_\chi,\mu) \, J_\gamma(m_w,\mu,\nu) \, J_{\bar{n}}(m_w,\mu,\nu) \, S(m_w,\mu,\nu) \times \\ & \; H_{J_{\bar{n}}}(M_\chi,1-z,\mu) \otimes H_S(M_\chi,1-z,\mu) \otimes C_S(M_\chi,1-z,m_w,\mu,\nu) \end{split}$$

• Hard:

• Soft:

• Jet:

Renormalization Group Evolution

- All large logarithms are resummed by renormalization group evolution
- Compute all functions at their natural scale: $F = 1 + c_1\alpha_W + \cdots$
- RG evolve to a common scale (s Laplace conjugate to $M_{\chi}(1-z)$).

• e.g. Hard function: $\mu \frac{d}{d\mu} H = -8 C_A \tilde{\alpha}_W \log \left(\frac{\mu^2}{(2M_\chi)^2} \right) H$ $\implies H(m_W) = \exp \left(-8 C_A \tilde{\alpha}_W \log^2 \left(\frac{m_W}{2M_\chi} \right) \right) H(2M_\chi)$

BAPTS 2018 October 12, 2018 29 / 44

Resummed Spectrum at LL

• Obtain simple analytic formula for leading logarithmic spectrum:

$$\begin{split} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}z}\right)^{LL} &= 4 \left|s_{0\pm}\right|^2 \hat{\sigma}_{line}^{LL} \, \delta(1-z) \\ &+ \frac{2 \, \alpha_W}{\pi} \, \frac{\hat{\sigma}_{line}^{LL}}{1-z} \, e^{\frac{4 \, \alpha_W}{\pi} \, L_J^2(z)} \bigg\{ \digamma_1 \Big(3 \, L_S(z) - 2 \, L_J(z)\Big) e^{\frac{-3 \, \alpha_W}{\pi} \, L_S^2(z)} - 2 \, \digamma_0 \, L_J(z) \bigg\} \, . \end{split}$$

 Non-trivial combination of perturbative logarithms and Sommerfeld factors.

• Formula at higher logarithmic orders remains functions of logarithms and Sommerfeld factors (but much less compact).

30 / 44

BAPTS 2018 October 12, 2018

Resummed Spectrum at LL

• Obtain simple analytic formula for leading logarithmic spectrum:

$$\begin{split} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}z}\right)^{LL} &= 4\left|s_{0\pm}\right|^{2}\hat{\sigma}_{line}^{LL}\,\delta(1-z) \\ &+ \frac{2\,\alpha_{W}}{\pi}\,\frac{\hat{\sigma}_{line}^{LL}}{1-z}\,e^{\frac{4\,\alpha_{W}}{\pi}\,L_{J}^{2}(z)}\bigg\{F_{1}\Big(3\,L_{S}(z)-2\,L_{J}(z)\Big)e^{\frac{-3\,\alpha_{W}}{\pi}\,L_{S}^{2}(z)}-2\,F_{0}\,L_{J}(z)\bigg\}\,. \end{split}$$

Perturbative Logarithms:

$$\begin{split} \hat{\sigma}_{\text{line}}^{\text{LL}} &= \frac{\pi \, \alpha_{\scriptscriptstyle W}^2 \, \sin^2 \theta_{\scriptscriptstyle W}}{2 \, m_{\scriptscriptstyle \text{DM}}^2 \, v} \exp \left[-\frac{4 \, \alpha_{\scriptscriptstyle W}}{\pi} \, \ln^2 \left(\frac{m_{\scriptscriptstyle W}}{2 \, m_{\scriptscriptstyle \text{DM}}} \right) \right] \\ L_J(z) &= \ln \left(\frac{m_{\scriptscriptstyle W}/m_{\scriptscriptstyle \text{DM}}}{2 \, \sqrt{1-z}} \right) \Theta \left(1 - \frac{m_{\scriptscriptstyle W}^2}{4 \, m_{\scriptscriptstyle \text{DM}}^2} - z \right) \, , \\ L_S(z) &= \ln \left(\frac{m_{\scriptscriptstyle W}/m_{\scriptscriptstyle \text{DM}}}{2 \, (1-z)} \right) \Theta \left(1 - \frac{m_{\scriptscriptstyle W}}{2 \, m} - z \right) \, , \end{split}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

BAPTS 2018 October 12, 2018 31 / 44

Resummed Spectrum at LL

• Obtain simple analytic formula for leading logarithmic spectrum:

$$\begin{split} \left(\frac{d\sigma}{dz}\right)^{LL} &= 4 \left|s_{0\pm}\right|^2 \hat{\sigma}_{line}^{LL} \, \delta(1-z) \\ &+ \frac{2 \, \alpha_W}{\pi} \, \frac{\hat{\sigma}_{line}^{LL}}{1-z} \, e^{\frac{4 \, \alpha_W}{\pi} \, L_J^2(z)} \bigg\{ F_1 \Big(3 \, L_S(z) - 2 \, L_J(z) \Big) e^{\frac{-3 \, \alpha_W}{\pi} \, L_S^2(z)} - 2 \, F_0 \, L_J(z) \bigg\} \, . \end{split}$$

Sommerfeld Effects:

BAPTS 2018 October 12, 2018 32 / 44

Energy Spectrum

 Provides first resummed prediction for the energy spectrum for heavy WIMP annihilation.

Energy Spectrum for Wino Annihilation

- Strongly peaked at endpoint.
- Non-trivial spread due to additional radiation.
- Once resummed, EW perturbation theory converges very well.

October 12, 2018 33 / 44

BAPTS 2018 October 12, 2018

Energy Spectrum

- HESS resolution much larger than line width
 - ⇒ integrates flux over a window.

Energy Spectrum

Differential Cross Section $M_{\chi}=3~{\rm TeV}$ Differential Cross Section $M_{\chi}=3~{\rm TeV}$ LL $z_{\rm cut}$ NLL 10^{-25} 10^{-26} 10^{-27} Hess Resolution $z=E_{\gamma}/M_{\chi}$

Integrated Cross Section

- Significant contribution from non-line photons.
- Additional photons can be used to strengthen limits.
- Allows real experimental resolution function to be used.

BAPTS 2018 October 12, 2018 34 / 44

H.E.S.S. Forecast

H.E.S.S. Analysis

 We* performed a realistic H.E.S.S. forecast using our prediction for the photon spectrum.

*Our H.E.S.S. collaborators Lucia Rinchiuso and Emmanuel Moulin

- Goals:
 - Effect of the full endpoint spectrum on constraints.
 - Using a wider ROI to improve sensitivity to core size.

←□ → ←□ → ← ≥

Review: Computing the Flux

- Quick Review:
 - Flux at the detector can be written

$$\frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E} = J \frac{\langle \sigma v \rangle}{8 \pi M_{\chi}^2} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E}$$

DM density enters as J-factor:

$$J = \frac{\int_{\mathrm{ROI}} \mathsf{d} s \, \mathsf{d} \Omega \, \rho_{\mathrm{DM}}^2(s,\Omega)}{\int_{\mathrm{ROI}} \mathsf{d} \Omega}$$

- Can place limits on EITHER
 - $\langle \sigma v \rangle$ for a fixed profile.
 - *J*-factor.

BAPTS 2018

Cross Section Limits

Provide updated limits using our spectrum.

Inclusion of endpoint photons strengthens limits.

BAPTS 2018 October 12, 2018 38 / 44

Core Size Constraints

• Can reinterpret as core size constraints for cored Einasto profile.

- Simulations give flattened cores of $\mathcal{O}(1)$ kpc for Milky-Way sized galaxies [e.g. Chan et al. 2015]
- Observations of stellar motion suggest ≤ 2 kpc core [e.g. Hooper 2017]

◆ロト ◆個ト ◆意ト ◆意ト 意 めなべ

BAPTS 2018 October 12, 2018 39 / 44

Core Size

• Due to Sommerfeld enhancement, for Thermal Wino DM, probe cores of $\mathcal{O}(1.5)$ kpc.

Beginning to enter interesting region!

BAPTS 2018

40 / 44

Extended R.O.I.

- To improve sensitivity to core size, we performed a forecast with an extended R.O.I.
- Extend from $1^{\circ} \rightarrow 4^{\circ}$, but use standard H.E.S.S. analysis.

BAPTS 2018

Extended R.O.I.

Extended R.O.I. significantly improves reach for core size.

• Probes cores of $\mathcal{O}(5)$ kpc for Thermal Wino DM!

BAPTS 2018 October 12, 2018 42 / 44

Conclusions

 EFTs provide powerful techniques for complicated multiscale problems.

 Derived factorized description allowing first calculation of resummed spectrum for indirect detection.

 \bullet HESS forecast with increased ROI allows to probe \sim 5 kpc cores.

