Phenomenology of Induced Electroweak Symmetry Breaking

Markus Luty UC Davis

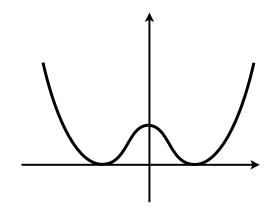
A. Azatov, J. Galloway, ML 1106.3346, 1106.4815

J. Galloway, ML, Y. Tsai, Y. Zhao 1306.6354

S. Chang, J. Galloway, ML, E. Salvioni, Y. Tsai 1410.????

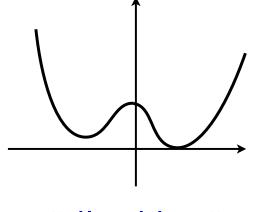
Motivation

The Higgs discovery and ongoing coupling constant measurements are consistent with a SM Higgs.

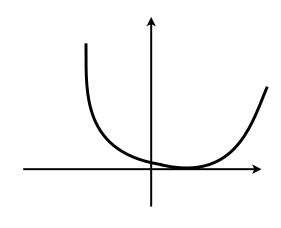

Motivation for non-SM Higgs:

- Phenomenology:
 Explore all possible realizations of EWSB
- Theory:

Big hierarchy problem ⇒ SUSY or composite Higgs Both have little hierarchy problem

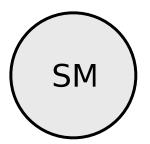

Higgs Potential

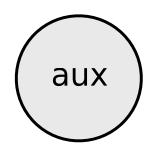
SM, SUSY


"Mexican hat"

Composite Higgs

"tilted hat"


Induced EWSB


"tilted bowl"

Induced EWSB

 $\epsilon \rightarrow 0$: decoupled "auxiliary" Higgs sector

$$\langle H \rangle = 0$$

$$\langle \Sigma \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ f \end{pmatrix}$$

$$\Rightarrow m_W = \frac{1}{2}gf$$

$$m_t = 0$$

$$\vdots$$

 $\epsilon \neq 0$:

$$\langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_H \end{pmatrix} \qquad \langle \Sigma \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ f \end{pmatrix} \qquad \mathbf{v} = \sqrt{\mathbf{v}_H^2 + f^2}$$

$$\langle \Sigma \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ f \end{pmatrix}$$

$$\Rightarrow m_W = \frac{1}{2}gv$$

$$m_t = y_t v_H$$

$$\vdots$$

$$v = \sqrt{v_H^2 + f^2}$$

Induced EWSB

 $\langle H \rangle$ arises from induced tadpole.

$$V_{\text{eff}} \simeq m_H^2 H^\dagger H + \epsilon (\Sigma^\dagger H + \text{h.c.}) + \cdots$$

$$m_H^2 > 0 \qquad \text{neglect quartic}$$

$$m_H \simeq 125 \text{ GeV}$$

Induced EWSB

 ϵ = perturbation?

$$\frac{\Delta g_{hVV}}{g_{hVV}^{(SM)}} \sim 10\% \implies f \lesssim 0.3v$$

$$\langle H \rangle \text{ dominates EWSB}$$

No conflict: expansion in $\left(\frac{\epsilon}{m_{\rm aux}^2}\right)^n$

$$m_{\text{aux}}^2 \sim \lambda_{\text{aux}} f^2 \gg \frac{v_H}{f} m_H^2$$

- \Rightarrow requires large quartic λ_{aux} in auxiliary Higgs sector
 - strong coupling $(\lambda_{aux} \sim (4\pi)^2)$
 - perturbative models

Effective Theory of EWSB

Integrate out auxiliary Higgs sector

⇒ nonlinear realization of EWSB + light Higgs doublet

$$\Sigma = e^{i\Pi/f} \in [SU(2) \times SU(2)]/SU(2)$$

= Goldstone modes from auxiliary Higgs sector

H = elementary Higgs field

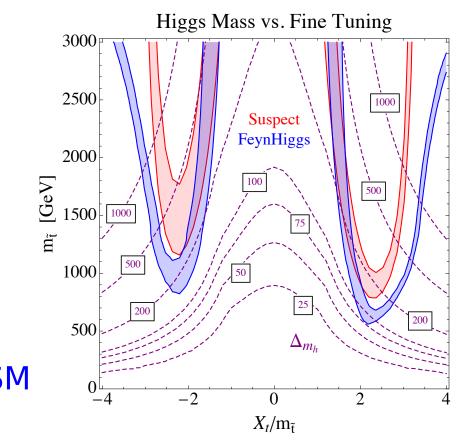
$$V(H) = m_H^2 H^{\dagger} H + \epsilon (\Sigma^{\dagger} H + h.c.) + \cdots$$

Pseudoscalar mixing: $\mathcal{M}_A^2 = m_H^2 \begin{pmatrix} 1 & v_H/f \\ v_H/f & v_H^2/f^2 \end{pmatrix}$

$$\Rightarrow m_A^2 = m_H^2 \frac{V^2}{f^2}$$

Theory Motivation

SUSY ⇒ light Higgs Too light?


MSSM tree level: $m_h^2 \sim \lambda_h v^2 \sim g^2 v^2 \Rightarrow m_h \leq m_Z$

loops:
$$\Delta \lambda_h \sim \frac{3y_t^4}{16\pi^2} \ln \frac{m_{\tilde{t}}}{m_t}$$

$$\Delta m_H^2 \sim \frac{3y_t^2}{16\pi^2} m_{\tilde{t}}^2$$

⇒ ~ 1% tuning

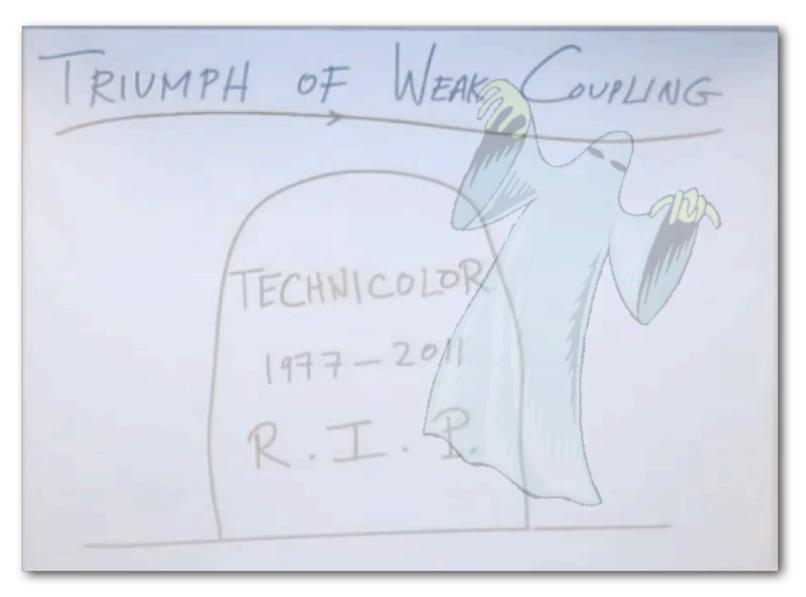
Motivates extensions of MSSM

Hall, Pinner, Ruderman 2011

Beyond the MSSM

Additional contributions to Higgs quartic ⇒ naturalness

NMSSM


$$\Delta W = \lambda S H_u H_d + \frac{\kappa}{3} S^3 \quad \Rightarrow \quad \Delta \lambda_h \sim \lambda^2$$

Non-decoupling D terms
 (Batra, Delgado, Kaplan, Tait 2004)

$$\Delta \lambda_h \sim \tilde{g}^2$$
 $\tilde{g} = \text{new gauge coupling}$

• Induced tadpole

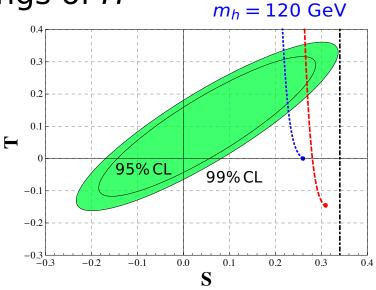
Superconformal Technicolor

N. Arkani-Hamed, 2011

Superconformal Technicolor

Azatov, Galloway, ML 2011

Auxiliary Higgs sector = strong superconformal sector

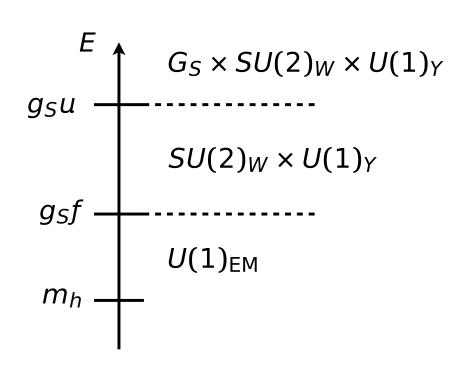

SUSY ⇒ strong EWSB at TeV scale

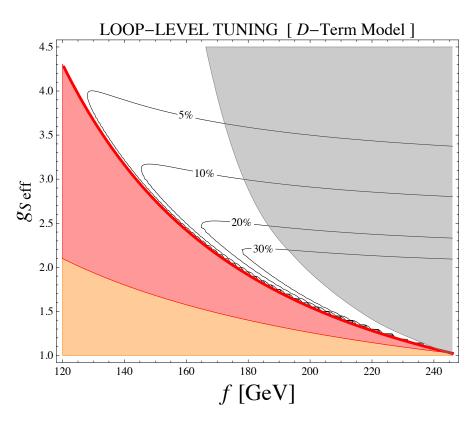
Intuitive picture: integrate out massive scalars

 $\Rightarrow \beta < 0 \Rightarrow$ fermion condensation

Technicolor problems are absent:

- Flavor from Yukawa couplings of H
- Precision EW tests $\Delta T > 0$ from $\epsilon_u \neq \epsilon_d$
- Motivated by light Higgs




Perturbative Models

Galloway, ML, Tsai, Zhao 2013

Auxiliary Higgs fields charged under new gauge group G_S

$$\Rightarrow \lambda_{\text{aux}} \sim g_{\text{S}}^2$$

- ~ 10% tuning in all of parameter space
- ⇒ robust solution of fine-tuning problem

Phenomenology

Induced EWSB ⇒ additional Higgs states cannot decouple

- Higgs coupling measurements Generically $g_{hhh} \ll g_{hhh}^{(SM)}$
- Direct Higgs searches
- Indirect constraints $(R_b, b \rightarrow s\gamma)$

Current bounds?

Prospects for upcoming 14 TeV run?

Phenomenological Model

Auxiliary Higgs sector = single Higgs doublet Σ + MSSM Higgs fields H_u , H_d

Assume one linear combination of H_u , H_d decouples:

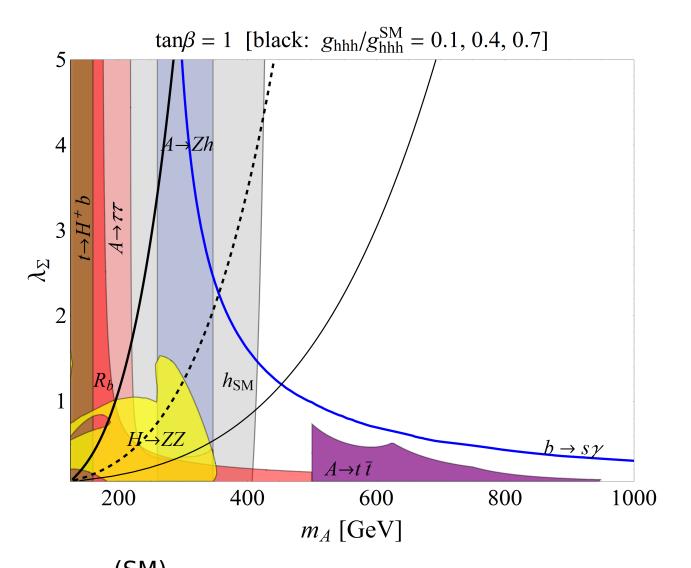
$$H' = H_u \sin \beta + \tilde{H}_d \cos \beta$$

= heavy mass eigenstate $\langle H' \rangle = 0$

$$H = H_u \cos \beta - \tilde{H}_d \sin \beta$$
= light doublet

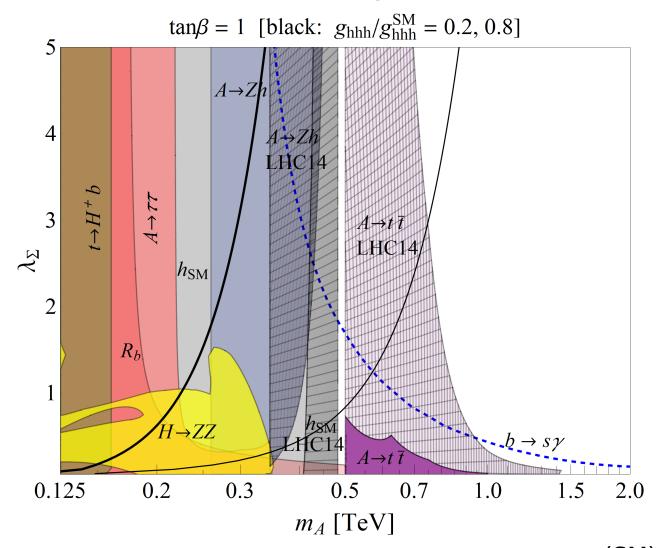
Only H couples to fermions \Rightarrow effective type I 2HDM

$$y_u = \frac{y_u^{(SM)}}{\sin \beta}, \qquad \qquad y_d = \frac{y_d^{(SM)}}{\cos \beta}$$


Phenomenological Model

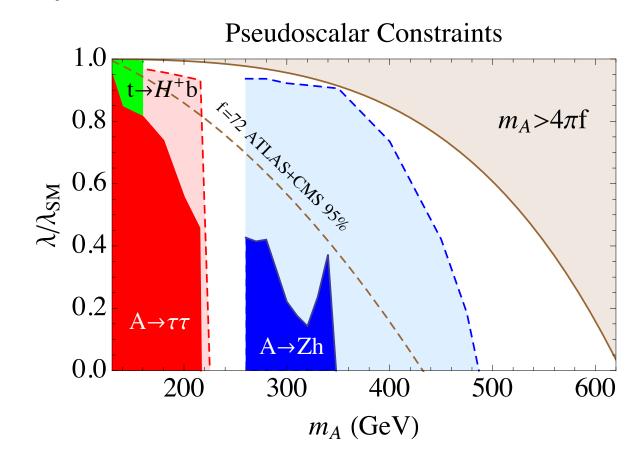
$$V_{\text{eff}} = m_H^2 H^{\dagger} H + m_{\Sigma}^2 \Sigma^{\dagger} \Sigma - \epsilon (\Sigma^{\dagger} H + \text{h.c.}) + \lambda_{\Sigma} (\Sigma^{\dagger} \Sigma)^2 + V_D$$

important only for g_{hhh}

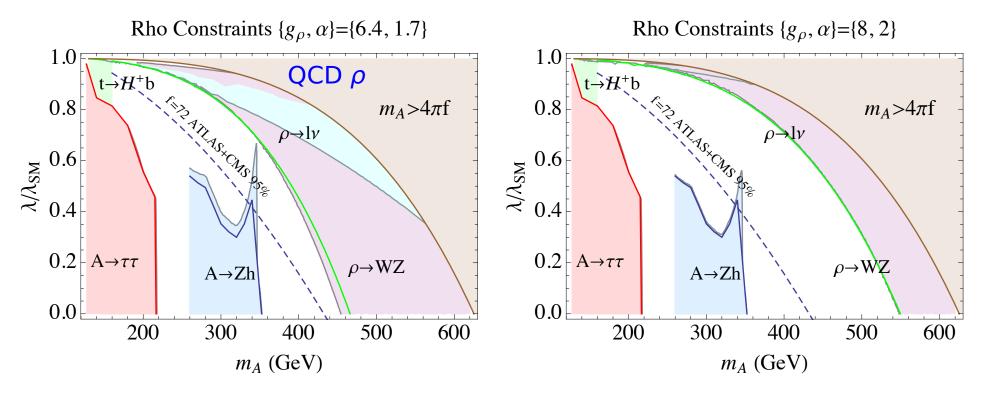

5 parameters:
$$m_H^2$$
, m_Σ^2 , κ , λ_Σ , $\tan \beta$ $\leftrightarrow f$, λ_Σ , $\tan \beta$ $(m_h = 125 \text{ GeV}, \nu = 246 \text{ GeV})$

LHC8 Constraints

 $g_{hhh} \simeq 0.5 \times g_{hhh}^{(SM)}$ still allowed tt resonance search below 500 GeV has discovery reach!


LHC14 Projections

Probes parameter space up to $g_{hhh} \sim 0.8 \times g_{hhh}^{(SM)}$ tt resonance search below 500 GeV still important


Strongly Coupled Models

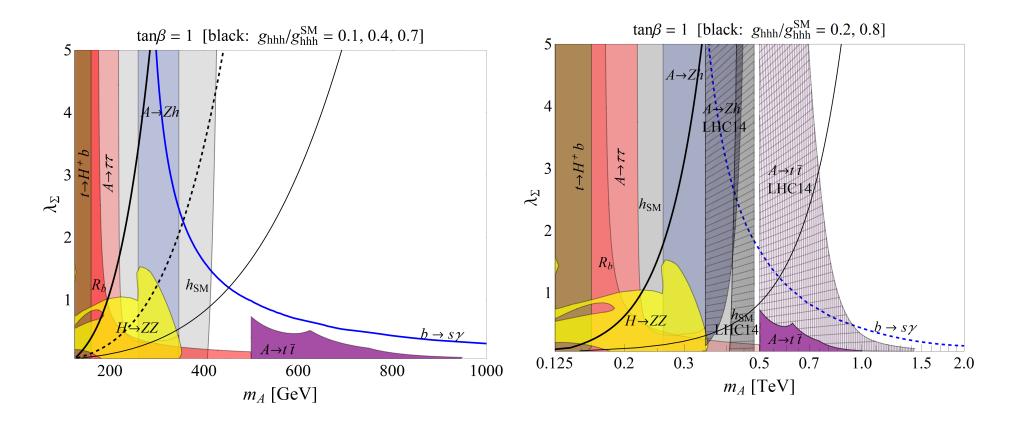
Nonlinear sigma model coupled to HCorresponds to limit $\lambda_{\Sigma} \to \infty$

Strongly Coupled Models

Model vector resonances from strong auxiliary Higgs sector (Falkowski, Grojean, Kaminska, Pokorski, Weiler 2011)

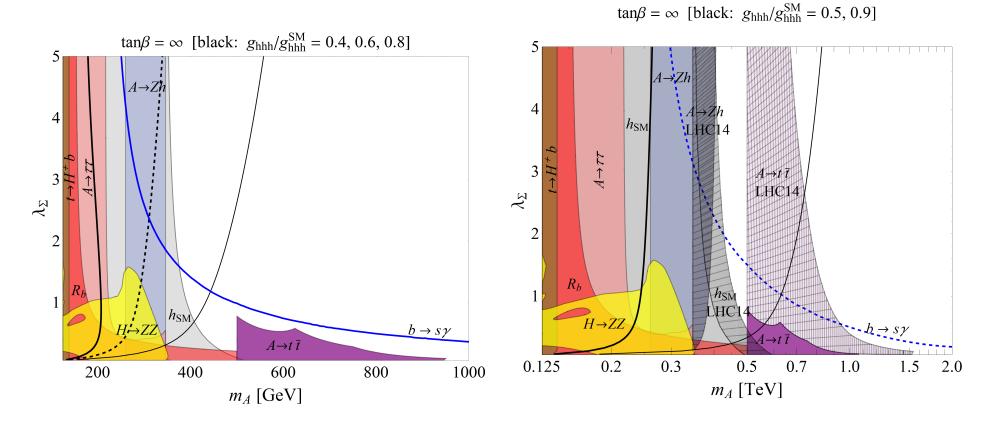
Constraints weaker for smaller g_{ρ}

BR($\rho^+ \to WZ$) suppressed when $\rho^+ \to H^+A$ opens up \Rightarrow new signals: $\rho^+ \to H^+A \to tbZh$, $\rho^+ \to WA \to WZh$


Conclusions

- Induced EWSB is an attractive possibility to generate a 125 GeV Higgs in SUSY
- Motivates a nonlinear realization of EWSB coupled to a light Higgs
- Consistent with all bounds
- Will be stringently tested at LHC14
- tt resonance search for m_{tt} < 500 GeV has discovery potential
- Potential new signal: heavy resonances decaying through Higgs cascades

Backup


Bounds/Projections

 $\tan \beta = 1$

Bounds/Projections

 $\tan \beta = \infty$

 g_{hhh} more constrained due to MSSM contribition