Exploring new landscapes in dark matter direct detection

Tongyan Lin UC San Diego Bay Area Particle Theory Seminar Oct 28, 2022

Direct detection of nuclear recoils

Direct detection of nuclear recoils

Landscape of direct detection above 1 GeV

<image>

XENON-nT

Many decades of progress searching for nuclear recoils

m_{χ} [MeV]

Landscape of direct detection below 1 GeV

Rapid development in recent decade

- New particle candidates
- New experiments
- New theory for direct detection

Basic Research Needs Report: "Dark Matter Small Projects New Initiatives"

Thermal freeze-out

(Part of) the motivation for WIMPs with mass 10-100 GeV

This hypothesis works in a broad mass range of ~MeV up to 100 TeV

Freeze-in

Dark matter populated by out-of-equilibrium annihilations

This also works for a broad mass range down to ~keV

Dodelson and Widrow 1993 Hall et al. 2009 Bernal et al. 2017 (review) Assumption: A' is a dark photon with equal & opposite coupling to e^- , p

Matching the observed DM density predicts a scattering rate

Dvorkin, TL, Schutz PRD 2019, PRL 2021 Chu, Hambye, Tytgat 2011 Essig, Mardon, Volansky 2011

Why sub-GeV dark matter?

Thermal(ish) dark matter candidates + wide open parameter space that can be probed with small-scale experiments

Small targets can have a large impact

1. Rate goes as 1/mass

$$R \sim \frac{\rho_{\rm DM}}{m_{\rm DM}} \bar{\sigma}_e v$$
 with $\rho_{\rm DM} \approx 0.4 \,{\rm GeV/cm^3}$

2. Kinematic matching with DM scattering

Energy deposited
$$\omega = \frac{1}{2}m_{\rm DM}v^2 - \frac{(m_{\rm DM}v - q)^2}{2m_{\rm DM}}$$

 $\omega \le vq - \frac{q^2}{2m_{\rm DM}}$

for a given momentum transfer q and DM velocity $v \approx 10^{-3}c$

DM scattering kinematics

Fig from Kahn, TL 2108.03239 Trickle, Zhang, Zurek, Inzani, Griffin 1910.08092

DM scattering kinematics

- * Kinematic mismatch of nuclear recoils for sub-GeV DM
- * Free nucleus approximation no longer valid

Fig from Kahn, TL 2108.03239 Trickle, Zhang, Zurek, Inzani, Griffin 1910.08092

MeV-scale DM:

Energy deposition: $\omega \sim m_{\chi} v^2/2 \sim eV$ Momentum transfer: $q \sim m_{\chi} v \sim keV$

In conventional insulators, semiconductors:

Electron excitations: $\omega \sim 1 - 14 \,\text{eV}, q \sim \alpha m_e = 3.7 \,\text{keV}$

Single phonon excitations: $\omega \lesssim 0.2 \,\mathrm{eV}, q \lesssim \mathrm{keV}$

"Kinematic matching" with available modes in solid state systems (Reviews: TL 2019, Kahn, TL 2021)

DM-electron scattering

Opportunity: constrained by available energy eigenstates rather than free-particle kinematics.

Fig from Kahn, TL 2108.03239 Trickle, Zhang, Zurek, Inzani, Griffin 1910.08092

DM scattering in a semiconductor

DM scattering in a semiconductor

Independent particle approximation:

$$\begin{split} & \underbrace{d\sigma}{d^{3}\mathbf{k}d\omega} \propto \bar{\sigma}_{e} F_{\mathrm{med}}^{2}(k) \sum_{\ell,\ell'} \sum_{\mathbf{p},\mathbf{p}'} |\langle \mathbf{p}',\ell'| e^{i\mathbf{k}\cdot\mathbf{r}} | \mathbf{p},\ell \rangle|^{2} \\ & \times f^{0}(\omega_{\mathbf{p},\ell}) \left(1 - f^{0}(\omega_{\mathbf{p}',\ell'})\right) \,\delta(\omega + \omega_{\mathbf{p},\ell} - \omega_{\mathbf{p}',\ell'}) \end{split}$$

Sum over occupied bands ℓ and Bloch momentum p to excited state $|p', \ell'\rangle$

Complications: not clear how different materials compare; collective effects?

Essig, Mardon, Volansky 2011; Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu 2015

Energy loss function (ELF)

Amount of screening is related to induced charge:

$$\frac{1}{\epsilon(\omega, \mathbf{k})} = 1 + \frac{4\pi e^2}{k^2} \chi(\omega, \mathbf{k})$$

Susceptibility, charge density response

Energy loss function (ELF) $\frac{1}{\epsilon(\omega, \mathbf{k})} = 1 + \frac{4\pi e^2}{k^2} \chi(\omega, \mathbf{k})$

External probe that couples to charge density:

$$S(\omega, \mathbf{k}) \propto 2 \operatorname{Im} \left(-\chi(\omega, \mathbf{k}) \right) = \frac{k^2}{2\pi\alpha_{em}} \operatorname{Im} \left(\frac{-1}{\epsilon(\omega, \mathbf{k})} \right) \text{ ELF}$$

Dissipation

DM-electron scattering rate is determined by ELF:

$$\frac{d\sigma}{d^3 \mathbf{k} d\omega} \propto \bar{\sigma}_e F_{\text{med}}^2(\mathbf{k}) \operatorname{Im}\left(\frac{-1}{\epsilon(\omega, \mathbf{k})}\right)$$

Knapen, Kozaczuk, TL 2021a, 2021b Hochberg, Kahn, Kurinsky, Lehmann, Yu, and Berggren 2021

DM-electron scattering

$$\frac{d\sigma}{d^3\mathbf{k}d\omega} \propto \bar{\sigma}_e F_{\rm med}^2(\mathbf{k}) \operatorname{Im}\left(\frac{-1}{\epsilon(\omega,\mathbf{k})}\right)$$

Energy loss function (ELF)

- Packages details of material in one function
- Many existing materials science approaches
- Accounts for previously missed screening effects

Energy loss function (ELF) of Silicon semiconductor

Impact for DM-electron scattering

Screening effects appear as $1/|\epsilon(\omega, \mathbf{k})|^2$

Knapen, Kozaczuk, TL PRD 2021a, 2021b

Many papers studying different targets. All dielectrics.

Theoretical constraints on the ELF

Lasenby & Prabhu <u>2110.01587</u>

ELF for Dark Matter

DarkELF: python package for dark matter energy loss processes with tabulated ELFs for a variety of materials (incl. Si, Ge, GaAs)

Kozaczuk, TL PRD 2020, Knapen, Kozaczuk, TL PRL 2021 ₂₆ Knapen, Kozaczuk, TL PRD 2021a, 2021b

DM-nucleus scattering in a crystal

What does DM-nucleus scattering look like in a crystal?

When momentum transfer $q \gg \frac{2\pi}{a} \sim \text{few keV}$ and $\omega \gg \bar{\omega}_{\text{phonon}} \sim 10\text{-}100 \text{ meV}$ DM scatters off an individual nucleus

What does DM-nucleus scattering look like in a crystal?

When momentum transfer

$$q \ll \frac{2\pi}{a}$$

and $\omega \sim \bar{\omega}_{\rm phonon}$

DM excites collective

excitations = phonons

DM-nucleus interaction

 f_J - effective coupling strength between DM and ion J

Short range SI interaction

$$\sigma_{\chi p} = 4\pi b_p^2$$

Scattering potential in Fourier space

$$V(\mathbf{q}) \propto b_p \sum_J f_J e^{i\mathbf{q}\cdot\mathbf{r}_J}$$

Dynamic structure factor

 χ

$$S(\mathbf{q},\omega) \equiv \frac{2\pi}{V} \sum_{f} \left| \sum_{J} \langle \Phi_{f} | f_{J} e^{i\mathbf{q}\cdot\mathbf{r}_{J}} | 0 \rangle \right|^{2} \delta\left(E_{f} - \omega\right)$$
$$= \frac{1}{V} \sum_{J,J'}^{N} f_{J} f_{J'}^{*} \int_{-\infty}^{\infty} dt \left\langle e^{-i\mathbf{q}\cdot\mathbf{r}_{J'}(0)} e^{i\mathbf{q}\cdot\mathbf{r}_{J}(t)} \right\rangle e^{-i\omega t}$$

Contains interference terms between different atoms → single phonon excitations

Theory of neutron scattering: Squires 1996, Schober 2014

Dynamic structure factor

Phonon comes into play through positions of ions:

Phonon dispersions ω_q and eigenvectors e_q calculated by first-principles approaches (density functional theory)

Single phonon contribution has been studied extensively in literature

$$S^{n=1}(\mathbf{q},\omega) \sim \sum_{J,J'} f_J f_{J'} \int dt \, \langle \mathbf{q} \cdot \mathbf{u}_J(0) \, \mathbf{q} \cdot \mathbf{u}_{J'}(t) \rangle e^{-i\omega t}$$

Griffin, Knapen, TL, Zurek 1807.10291; Griffin, Inzani, Trickle, Zhang, Zurek 1910.10716 Griffin, Hochberg, Inzani, Kurinsky, TL, Yu 2020; Coskuner, Tickle, Zhang, Zurek 2102.09567

Single phonon excitations

Knapen, TL, Pyle, Zurek PRB 2018 Griffin, Knapen, TL, Zurek PRD 2020

Single phonon excitations

Knapen, TL, Pyle, Zurek PRB 2018 Griffin, Knapen, TL, Zurek PRD 2020

Single phonon excitations

Materials properties for DM

Use different materials to maximize sensitivity to particular models, discriminate signal vs. background, and for directional detection.

Knapen, TL, Pyle, Zurek PRB 2018; Griffin, Knapen, TL, Zurek PRD 2018; Griffin, Hochberg, Inzani, Kurinsky, TL, Yu PRD 2020; 35

Daily modulation

Phonon detection

Single phonons excitations with energy 1-100 meV

TES and Fin-Overlap Regions (W)

Technologies being explored include TES, KID, Qubits Athermal Phonon Collection Fins (Al)

From TESSERACT white paper

Existing state of the art phonon detection at energies of 1-10 eV

SuperCDMS

$\mathcal{O}(q), \mathcal{O}(q), \mathcal$

Campbell-Deem, Knapen, TL, Villarama PRD 2022 Campbell-Deem, Cox, Knapen, TL, Melia PRD 2020 Knapen, Kozaczuk, TL PRL 2021

 $\mathcal{O}(q^4)$

Dynamic structure factor

Expansion in $q^2/(M_N\omega)$ (and anharmonic interactions):

Quickly becomes more complicated to evaluate for more than 1 phonon

Our approach: use harmonic & incoherent approximations

Incoherent approximation for $q > q_{\rm BZ}$ or n > 1 phonons

Neglect interference terms entirely:

$$S(\mathbf{q},\omega) \approx \frac{1}{V} \sum_{J}^{N} (f_J)^2 \int_{-\infty}^{\infty} dt \, \langle e^{-i\mathbf{q}\cdot\mathbf{u}_J(0)} e^{i\mathbf{q}\cdot\mathbf{u}_J(t)} \rangle e^{-i\omega t}$$

Given in terms of auto-correlation function

Motivation for $q > q_{\rm BZ}$: scatter off individual nuclei at large q

Motivation for n > 1: momentum gets distributed over multiple phonons, and the motions of individual atoms will be less correlated.

Auto-correlation can be approximated using the phonon density of states

$$\langle \mathbf{q} \cdot \mathbf{u}_{J}(0) \mathbf{q} \cdot \mathbf{u}_{J}(t) \rangle \approx \frac{q^{2}}{2m_{N}} \int d\omega' \frac{D(\omega')}{\omega'} e^{i\omega't}$$
In the harmonic, isotropic limit
$$Dynamic structure factor with incoherent approximation:$$

$$S(q,\omega) \propto \sum_{J} e^{-2W_{J}(q)} (f_{J})^{2} \sum_{n} \frac{1}{n!} \left(\frac{q^{2}}{2m_{N}}\right)^{n} \left(\prod_{i=1}^{n} \int d\omega_{i} \frac{D(\omega_{i})}{\omega_{i}}\right) \delta\left(\sum_{j} \omega_{j} - \omega\right)$$

$$\sim \left(\frac{q^{2}}{2m_{N}\bar{\omega}_{ph}}\right)^{n}$$

$$q \approx \sqrt{2m_{N}\bar{\omega}_{ph}} \text{ for many phonons to contribute}$$

41

Multiphonons become important around $q = \sqrt{2m_N \bar{\omega}_{ph}}$

Impulse approximation

When $q \gg \sqrt{2m_N \bar{\omega}_{ph}}$, "re-sum" the n-phonon contributions and directly evaluate by saddle-point approximation:

$$S^{\rm IA}(q,\omega) \propto \sum_J f_J^2 \sqrt{\frac{2\pi}{\Delta^2}} \exp\left(-\frac{(\omega - \frac{q^2}{2m_N})^2}{2\Delta^2}\right), \quad \Delta^2 = \frac{q^2 \bar{\omega}_{\rm ph}}{2m_N}$$

As $\omega \gg \bar{\omega}_{\rm ph}$, $\Delta/\omega \to 0$, take narrow-width limit:

$$S(q,\omega) \propto \sum_{J} f_{J}^{2} \, \delta\left(\omega - \frac{q^{2}}{2m_{N}}\right)$$

reproducing free nuclear recoils

Response of GaAs semiconductor to DM-nucleus scattering

Campbell-Deem, Knapen, TL, Villarama PRD 2022

From single phonons to nuclear recoils

First steps towards describing DM-nucleus scattering into multiphonons.

Campbell-Deem, Knapen, TL, Villarama PRD 2022 See also Kahn, Krnjaic, Mandava 2011.09477

Fruitful playground for DM searches and materials properties

organic scintillators, quantum dots, ...