### GAMMA-RAY SEARCHES FOR DARK MATTER IN CELESTIAL BODIES

REBECCA LEANE SLAC NATIONAL ACCELERATOR LABORATORY

BAPTS MARCH 11<sup>TH</sup> 2022

BASED ON 2101.12213 + 2104.02068 W/ TIM LINDEN, PAYEL MUKHOPADHYAY, NATALIA TORO



### Finding Particle Dark Matter





# **New searches** with astrophysical systems

Use **astrophysical datasets** to discover new particles

# New Gamma-Ray Searches

- Traditional indirect detection:
  - Look for annihilation or decay products in dark matter halos



- Alternate signal:
  - Gamma rays from celestial objects!









### Data next 5 - 10 years





Fermi-LAT, HAWC, HESS gamma-ray data available now

- Radius: Larger amount of DM captured, larger annihilation signal
- **Density:** Easier to trap DM, sensitivity to weaker interactions
- Core temperature: Higher temperature gives more kinetic energy to DM, can kick out the DM (not good!)











# Galactic Center Signal

- Galactic Center benefits:
  - High DM density
  - Lower DM velocity
  - Lots of neutron stars and brown dwarfs present





# Galactic Center Population Signal

Use all the neutron stars, all the brown dwarfs

Indirect detection flux with celestial objects!



RKL, Linden, Mukhopadyay, Toro, 2021

<u>Halo</u>

Annihilation Scaling: I

$$\Gamma_{
m halo} \propto rac{\left<\sigma_A v \right> n_\chi^2}{2}$$



#### <u>Halo</u>

Annihilation Scaling: I

$$\Gamma_{
m halo} \propto rac{\left< \sigma_A v \right> n_\chi^2}{2}$$

### **Celestial-body population**





#### <u>Halo</u>

Annihilation Scaling:

$$\Gamma_{
m halo} \propto rac{\left<\sigma_A v \right> n_\chi^2}{2}$$

### **Celestial-body population**

Max capture rate:

$$C_{\max} = \pi R^2 n_{\chi}(r) v_0 \left( 1 + \frac{3}{2} \frac{v_{\text{esc}}^2}{\overline{v}(r)^2} \right) \xi(v_p, \overline{v}(r)),$$





#### <u>Halo</u>

Annihilation Scaling:

$$\Gamma_{
m halo} \propto rac{\left<\sigma_A v \right> n_\chi^2}{2}$$

### **Celestial-body population**

Max capture rate:

$$C_{\max} = \pi R^2 n_{\chi}(r) v_0 \left( 1 + \frac{3}{2} \frac{v_{\text{esc}}^2}{\overline{v}(r)^2} \right) \xi(v_p, \overline{v}(r))$$

Population capture rate:

$$C_{\rm BD/NS,tot} = 4\pi \int_{r_1}^{r_2} r^2 \, n_{\rm BD/NS} \, C \, dr$$





<u>Halo</u>

Annihilation Scaling:

$$\Gamma_{
m halo} \propto rac{\left< \sigma_A v \right> n_\chi^2}{2}$$

### **Celestial-body population**

Max capture rate:

$$C_{\max} = \pi R^2 n_{\chi}(r) v_0 \left( 1 + \frac{3}{2} \frac{v_{\text{esc}}^2}{\overline{v}(r)^2} \right) \xi(v_p, \overline{v}(r))$$

Population capture rate:

$$C_{\rm BD/NS,tot} = 4\pi \int_{r_1}^{r_2} r^2 \, n_{\rm BD/NS} \, C \, dr$$

Annihilation/Capture equilibrium:

$$\Gamma_{\rm ann} = \frac{\Gamma_{\rm cap}}{2}$$





<u>Halo</u>

Annihilation Scaling:  $\Gamma_1$ 

$$_{
m halo} \propto rac{\left< \sigma_A v \right> n_\chi^2}{2}$$

 $\Gamma_{\rm ann} \propto n_{\chi} n_{\rm BD/NS}$ 

### **Celestial-body population**

Max capture rate:

$$C_{\max} = \pi R^2 n_{\chi}(r) v_0 \left( 1 + \frac{3}{2} \frac{v_{\text{esc}}^2}{\overline{v}(r)^2} \right) \xi(v_p, \overline{v}(r))$$

Population capture rate:

Annihilation Scaling:

$$C_{\rm BD/NS,tot} = 4\pi \int_{r_1}^{r_2} r^2 \, n_{\rm BD/NS} \, C \, dr$$

Annihilation/Capture equilibrium:

$$\Gamma_{\rm ann} = \frac{\Gamma_{\rm cap}}{2}$$





 Signal morphology: DM density squared, vs DM density\*stellar density

 Celestial-body "focused" annihilation "focuses" rate above halo levels

 Only s-wave detectable in the halo, and only for lighter DM masses





**RKL**, Linden, Mukhopadyay, Toro, 2021 Rebecca Leane (SLAC)

# Gamma-ray population detectability

- Detectability: compare with known gamma-ray data
  - Use Fermi and H.E.S.S. data for Galactic Center
  - No model assumptions on mediator, other than must escape
  - Brown dwarfs very large signal!



**RKL**, Linden, Mukhopadyay, Toro, 2021

# New Limits w/ Brown Dwarfs and Neutron Stars



RKL, Linden, Mukhopadyay, Toro, 2021

| Brown Dwarf | Neutron Star  | Sun        | Jupiter     |
|-------------|---------------|------------|-------------|
| BIG<br>Cold | Small<br>Cold | BIG<br>Hot | BIG<br>Cold |

### Available data: Fermi, HAWC

### Limitations:

+ Hot+ Higher DM evaporation (~GeV mass)

### Benefits:

- + Huge
- + Proximity
- + Excellent data

# THE SUN



# THE SUN

### • Long-lived particle scenario, excellent gamma-ray sensitivity



Leane, Ng, Beacom (PRD '17) Leane + HAWC Collaboration (PRD '18 a,b)



# JUPITER

Leane, Linden 2021

# Why Jupiter?



### Sun Long-Lived Mediator Limits

Leane, Ng, Beacom (PRD '17) Leane + HAWC Collaboration (PRD '18)



### Jupiter

**Cooler** than the Sun: MeV-DM mass sensitivity!

# Jupiter in Gamma Rays

What does Jupiter look like in gamma rays? No one had ever really checked!

### If we find gammas, they could be from:

+ acceleration of cosmic rays in Jovian magnetic fields

+ interaction of cosmic rays with Jupiter's atmosphere

...or something exotic (dark matter)!



# Fermi Analysis of Jupiter

+ Analyze 12 years of Fermi data, 10 MeV – 10 GeV

+ Select photons within 45 degrees of Jupiter's orbit

+ Data-driven background model from Jupiter orbit when it is not there

+ Subtract "on" and "off" map events



# Jupiter in Gamma Rays



Leane + Linden '21

# Jupiter Gamma-Ray Flux Limits

+ For range of power-law spectra, statistical sig of Jupiter emission never exceeds  $\sim 1.5\sigma$ 

+ In low energy bins, larger excess, but important systematics not there

+ Motivates follow-up with MeV telescopes: AMEGO, e-ASTROGAM



Rebecca Leane (SLAC)

Leane + Linden '21

# New dark matter limits

### Some assumptions:

+ direct decay to gammas,(but other final states possible)

+ mediator decay length > Jupiter radius

+ equilibrium



Rebecca Leane (SLAC)

Leane + Linden '21

# Summary

• New gamma-ray searches for sub-GeV DM in celestial bodies:

+ Search for gamma rays, powered by Galactic Center population of brown dwarfs or neutron stars, new sub-GeV DM limits

+ Search for gamma rays from Jupiter, new sub-GeV DM limits, motivates follow up with MeV gamma-ray telescopes





# EXTRA SLIDES

# Jupiter in Gamma Rays

Counts/deg<sup>2</sup>



Leane + Linden '21

