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Symmetry is the theorist’s friend:

e UV more symmetric than IR
+ Spontaneously broken symmetries
o Weak forces
o light pions
o axions
+ UV fixed point

e Gauge symmetries
o forces

o (Approximate) global symmetries
o spectra
o UV protection
o suppression of FCNC

e Anomalous symmetries .
e IR more symmetric than UV

°© N’ mass

o pion decay + IR fixed point

o axions + Accidental symmetries

0 o protection from radioactive decay

chiral magnetic effect .
o Lorentz symmetry from the lattice
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There are times when a theorist wishes for more symmetry:

e hierarchy
e mass textures
e suppression of FCNC

Are there other ways that approximate symmetries can emerge?

Some evidence in low energy hadronic physics:

o “Schrodinger symmetry” (nonrelativistic conformal symmetry)
e spin-flavor symmetries

This talk: these approximate symmetries can be correlated with
minimization of entanglement in scattering.
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Emergent symmetries seen in the baryons:
i. SU(4), SU(6) spin-flavor symmetry
. SU(4) Wigner symmetry

iii. Schrodinger symmetry

iv. SU(16) (?!) in baryon octet
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SU(4), SU(6) spin-flavor symmetry (1960s)

SU(4): A SU(6):
4 =

N\ Z
/4

O =

N\ 2
N\

Q Q. & &

» » QL& &

e Symmetry of non-relativistic quark model
e Approximate symmetry apparent in nature:
* masses
e magnetic moments & transitions
e semi-leptonic currents
e meson-baryon couplings
e NN scattering
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SU(4), SU(6) spin-flavor symmetry (1960s)

e Cannot be a symmetry of relativistic QFT (Coleman-Mandula)

e For baryon-meson couplings, does follow from QCD in large-Nc limit
Gervais, Sakita (1984); Dashen, Manohar (1993), Dashen, Jenkins, Manohar (1994)
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e Large-N. seems to also work in nuclear physics:

° ; DBK, A. Manohar (1996)

1/3 L ®

e ...and implies spin-flavor symmetries in low energy baryon-baryon
Interactions...
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SU(2Ng) spin-flavor symmetries in low energy baryon-baryon interactions
also follows from large-N. DBK, M.J. Savage (1995)

e Nf= 2 (nucleons & A)
1
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e Nf =2 (restricted to nucleons)

Lé=—2Cs(N'N)?> — 1Cr(NTGN)? >= general Weinberg (1990)

Cs = 2@ —]05/27) : Cr =0 > SU(4) prediction
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s this an approximate symmetry of nature?

Predicts equal scattering lengths for 1S, 3S; NN scattering lengths
1S, scattering length = -23.7 fm ~ 1/8 MeV
3S, scattering length = + 5.4 fm ~ 1/35 MeV

\/ very small for both
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s this an approximate symmetry of nature?

Predicts equal scattering lengths for 1S, 3S; NN scattering lengths
1S, scattering length = -23.7 fm ~ 1/8 MeV
3S, scattering length = + 5.4 fm ~ 1/35 MeV

\/ very small for both

Better diagnostic: accidental SU(4)wigner Ssymmetry

=
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Example of evidence for SU(4)wigner : B-decay in A=18 isobars

EMeV) J7| E(MeV) JT| EMeV) JT|

1.98 2,1 3.0——— 2,1 1.89 27,

[1.23] 01 104 01 \\ [1.10] 0',1
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EMeV) J7| EMeV) JT| EMeV) J"|
1.98 2" 3.06—— 2",1 1.89 21
[123] o1 04 0"1 = [1.10] 0%
18 \ /B+/E 18Ne
|3+ 17,0
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Example of evidence for SU(4)wigner : B-decay in A=18 isobars

EMeV) J7| E(MeV) JT| EMeV) JT|

1.98 2, 271 1.89 2°1

SU(4)w disallowed transitions

[1.23] 01 104 0"1 \ [1.10] 0" 1
180 \ » 18N6
+ 1+7O / o o
B 18p SU(4)w allowed transitions

+(0,1) =6 of SU(1)

Gamow-Teller weak transition (B decay): 0;7+ € SU(4)
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Example of evidence for SU(4)wigner : B-decay in A=18 isobars

EMeV) J7| E(MeV) JT| EMeV) JT|

1.98 2, 271 1.89 2°1

SU(4)w disallowed transitions

[1.23] 01 104 0"1 \ [1.10] 0" 1
180 \ » 18N6
+ 1+7O / o o
B 18p SU(4)w allowed transitions

+(0,1) =6 of SU(1)

Gamow-Teller weak transition (B decay): 0;7+ € SU(4)

SU(4)w allowed matrix elements ~10 x greater than SU(4),, disallowed
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So far: no surprises? — emergent spin-flavor symmetries can be
explained by large-N¢
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So far: no surprises? — emergent spin-flavor symmetries can be
explained by large-N¢

First surprise: unnaturally large scattering lengths in NN scattering give
approximate Schodinger symmetry (NR conformal)

M

(NS
(e \O O
1S, scattering length = -23.7 fm ~ 1/8 MeV “\/\(\-\‘aﬁ (\Z\‘\\ A
3S, scattering length = + 5.4 fm ~ 1/35 MeV S‘\)(\'\ed

4 1 a,(,O((\S
M (-1 4iVME)

very small for both

A ~
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P
m\\o eO
1S, scattering length = -23.7 fm ~ 1/8 MeV oy (\-\‘aﬁ g\il'\‘\\ xafP¥
3S, scattering length = + 5.4 fm ~ 1/35 MeV Sch\ed

i)
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Baryon-baryon interactions Ne=3 / SU(6) spin-flavor symmetry
(also predicted by large-N()

1
Lo=— [ (Wh, wHe)? 4 it \IJWT\IJLST\IJP‘S"

f2 pvp prvo
o 1 | | |
baryon decuplet baryon octet
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Baryon-baryon interactions Ne=3 / SU(6) spin-flavor symmetry
(also predicted by large-N()

1
Lo = —— |a(W],, 0H7)2 + 0w, 0wl e

f2 pvp prvo
. 1 .
\P(az)(ﬁ])}jﬂjﬁk T \/—1_8 (BZ 667 + B m 6704 + Bk e Eaﬁ)
baryon decuplet baryon octet
Low-energy EFT for just the octet: M.). Savage, M.B. Wise (1995)
L = —aTrB]B;BB; — ¢;Tr B} B;B!B; — ¢sTr B} B! B; B,
—c,Tr B]BIB; B; — ¢sTt B} B;Tr B! B; — ¢sTr B] B;Tr B! B,
0 A
B, = > — == —= .
= \/5:';)'_ Ve ZA l = 1)‘
— = V6
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L = -aTrB!B;BIB; — c;Tr B] B;B!B; — c3Tr B} Bl B; B
—c,Tr B]BIB;B; — 5Tt B! B; Tt Bl B; — ¢sTr B} B;Tr B] B;

SU(6) prediction:

7 10
C1 ——2—7b, CQ——b, C3 —gb,

14 2 1
C4 :—8—1[), C5—(Z—|——b, Ce :—gb

Does this work? Look at lattice data
e NPLQCD collaboration, 2015
e equal quark masses
e My =806 MeV
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PHYSICAL REVIEW D 96, 114510 (2017)

Baryon-baryon interactions and spin-flavor symmetry from lattice
quantum chromodynamics

Michael L. Wagman,l’2 Frank Winter,3 Emmanuel Chang,2 Zohreh Davoudi,4 William Detmold,4
Kostas Orginos,s’3 Martin J. Savage,l’2 and Phiala E. Shanahan’
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L = —clr_?IXBZ-B;Bj—CQTrB- B; — c; TR B! B, B,

—c Tt B %Bi ~ & Tr BI B, Tr B! B;

NPLQCD results:
*Onlycsz0
e Near critical value for large scattering lengths

Similar to N=2 large-Nc result:  Le @ %CMWV)Q
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L = —clthXBiBij—cQTrB -—cST)éjB;BZ-Bj

ey Tr BJ%BZ- — & Tr BB, Tr BB ¢ T Bj%rr B!,

NPLQCD results:
*Onlycsz0
e Near critical value for large scattering lengths

Similar to Ne=2 large-Nc result:  Le %CMEN)Q

But:

e More symmetric than SU(6) [b = 0]
e EFT possesses SU(16) analog of SU(4)wigner

e Near critical value for large scattering lengths — conformal symmetry

Not large-N. predictions
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SU(4)wigner SU(16)npLacD

~conformal ~conformal
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~conformal ~conformal

No known reason for these symmetries
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SU(4)wigner SU(16)npLacD

~conformal ~conformal

No known reason for these symmetries

...but correlated with low entanglement
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INSTITUTE for
NUCLEAR THEORY

MAY 15, 1935

PHYSICAL REVIEW

VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINsTEIN, B. PopoLsky AND N. RosEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

In a complete theory there is an element corresponding
to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

D. B. K.aPLaw

BAPTS

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

3/15/19



DISCUSSION OF PROBABILITY RELATIONS BETWEEN
SEPARATED SYSTEMS

By E. SCHRODINGER

[Communicated by Mr M. BORN]

[Received 14 August, read 28 October 1935]

When two systems, of which we know the states by their respective
representatives, enter into temporary physical interaction due to
known forces between them, and when after a time of mutual
influence the systems separate again, then they can no longer be
described 1n the same way as betore, viz. by endowing each of them
with a representative of its own. I would not call that one but rather
the characteristic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought. By the interaction the
two representatives (or wave-functions) have become entangled.
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How to quantify entanglement?
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How to quantify entanglement?
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Factorizable Hilbert space: # =N XA

Reduced density matrix: pa =T1rpp
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Factorizable Hilbert space: # =N XA

Reduced density matrix: pa =T1rpp

pp =1rap

Pure state on # — typically pa, ps will represent mixed states, reflected in
entropy:

S=0, Si=Sg+#0

Shows that systems A and B are entangled
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Is there a connection between entanglement and dynamics?
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spatial regions
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Is there a connection between entanglement and dynamics?

Yes: for many-body systems, QFTs: when A, B correspond to
spatial regions

|Nx1, N2y Nxgy Nxay «en Ny1y Ny Nys, onl >
A B

Observed that ground states seem to obey area-law entanglement

Sa4 = Sp o area of shared boundary

What is special about position
coordinates?

Hamiltonian is local
Correlations fall off with |x-y|
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Entanglement knows about dynamics

In a strongly coupled system with composite particles (eg, QCD) can
entanglement help determine their wave functions and interactions
(and hence their symmetries)?

Quantify the amount of entanglement in the S-matrix
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How to quantify entanglement of a N-N scattering process?

One way (PRL 122, 102001 (2019), arXiv: 1812.03138):
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(pure state, zero entropy)
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How to quantify entanglement of a N-N scattering process?

One way (PRL 122, 102001 (2019), arXiv: 1812.03138):

e Start with two non-identical baryon flavors with spin up
(pure state, zero entropy)

[T [ 1)

e Rotate the two spins independently, this is the in state
(pure state, zero entropy)

R($1)| 11 R(2)| 1)2

e« Compute the out-state using the S-matrix

e Compute the reduced density matrix p, for the out-state

e Define the entanglement power for the S-matrix:

: a0 dQ .
E(S):l_/ v
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Entanglement power in s-wave nucleon-nucleon scattering:

. 1 . . . 1 . .
S — Z (361251 € 62250) 1 + Z (67,251 . 62250) U
N 1 5
E(S) = - sin (2(61 — d9))
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Entanglement power in s-wave nucleon-nucleon scattering:

. 1 . . . 1 . .
S — Z (361251 € 62250) 1 + Z (6’1,251 . 62250) U
N 1 5
E(S) = - sin (2(61 — d9))

o.15}ﬁ :
: M pwa%3 [ nijml |
' ) [ ] esc96 reid93 ]
W 0.5 \
oooLL V. ... ... '
0 100 200 300 400
p (MeV)
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Alternatively: look at the space of low energy EFTs for pcm < my/2

Lo =—3Cs(NTN)? — LCp(NTGN)?
1S Cy = (Cg — 3C7)

Conformal fixed points
(infinite scattering lengths)

SU(4)wigner symmetry line
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Other definitions of entanglement power also explored

Can show in each case:
e SU(16) for N&=3

e Conformal symmetry, for N=2,3

Are sufficient to ensure zero entanglement power for the S-matrix

... and probably necessary.
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Conclusions:

There are apparent approximate symmetries w/o explanation in the
strong interactions:

e non-quark spin-flavor symmetries

e NR conformal (Schrodinger) symmetries

Can ascribe an “entanglement power” to the S-matrix which knows
about flavor & spin changing interactions

Entanglement is minimized for flavors & spin diagonal interactions,
as well as for conformal fixed points

Can symmetries be explained by dynamical systems “wanting” to
minimize entanglement?

Need to examine more examples; model examples with feedback
mechanism
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