Searching for dark particles at the SeaQuest experiment

Stefania Gori UC Santa Cruz

Bay area particle theory seminar (BAPTS)

San Francisco State University October 12, 2018

Outline

from symmetry magazine

1. Introduction

Why dark sectors?

2. Fixed target experiments

- * The CERN effort (now & future)
- * Uniqueness of the SeaQuest experiment at Fermilab

3. Prospects for testing dark sectors at SeaQuest

- Minimal dark photon models
- Inelastic Dark Matter
- # Beyond dark photon models

Impact of the SeaQuest **EMCal upgrade** in the search for dark sectors

Dark Matter (DM) is there!

What do we know about it? Not much

Dark Matter (DM) is there!

What do we know about it? Not much

1. It gravitates

Coma cluster (of galaxies)

Andromeda Galaxy

- 2. It is dark (i.e. it does not interact with photons)
- **3.** It is stable on cosmological scales

Fun fact: There is lots of DM in the Universe, but

for DM particles weighing several hundred times the mass of the proton, there should be about one DM particle per coffee-cup-sized volume of space.

Stars, Planets

🗕 Dark Matte

23%

Thermal dark matter

Thermal dark matter

Thermal dark matter

with the SM in the early universe

Detectability?

SM

DM

We have learned a lot about WIMPs!

We have learned a lot about WIMPs!

We have learned a lot about WIMPs!

"Thermal goals" for dark sector models

Two general classes of thermal DM:

"Thermal goals" for dark sector models

"Thermal goals" for dark sector models

Dark sectors in a nutshell

Further motivations?

Several anomalies in data can be addressed by dark sectors (eg. $(g-2)_{\mu}$, B-physics anomalies, Dark Matter anomalies, ...)

What theories?

DM theories, Supersymmetric theories (NMSSM), neutral naturalness theories, theories for baryogengesis, ...

How to test this emerging paradigm?

e/p fixed target experiments

Proton vs. electron fixed target experiments:

Protons: typically higher energies (reach towards larger dark sector masses) **but** larger backgrounds (needs more shielding)

Proton fixed target experiments

Past experiments: Charm, LSND, ...

Present/future experiments: large effort at CERN (400 GeV proton beam):

at CERN: Codex-b, FASER, ...

Proton fixed target experiments

Past experiments: Charm, LSND, ...

Present/future experiments: large effort at CERN (400 GeV proton beam):

The SeaQuest experiment

Fermilab Accelerator Complex

S.Gori

SeaQuest in a nutshell

1. Compact geometry
Sensitivity to (slightly) displaced dark particles with d > 5m

2. KMAG separating even very forward muons $(\Delta p_T \sim 0.4 \text{ GeV})$

Identification of very light dark particles/squeezed spectra

SeaQuest in a nutshell

Sensitivity to (slightly) displaced dark particles with **d > 5m**

1. Compact geometry

2. KMAG separating even very forward muons $(\Delta p_T \sim 0.4 \text{ GeV})$

Identification of very light dark particles/squeezed spectra

Experiment Proton energy POT Dump Decay volume	
Setup SeaQuest 120GeV 10 ¹⁸ 5 m 10 m	
CHARM 400GeV 2.4×10^{18} 480 m 35 m	Past
LSND 800MeV 10 ²² 30 m 10 m	1 401
NA62 400 GeV 10 ¹⁸ 100 m 250 m	Future
S.Gori SHiP 400 GeV 10 ²⁰ 65 m 125 m	

Status and prospects

Nuclear physics program:

Probe sea quarks in the proton

E906, unpolarized targets (2012–2017)

The **particle physics program** can run parasitically

* Parasitic searches for dark photons approved 2015 (E1067)

Spring 2017: Displaced dimuon trigger installed

> * Two new fine-grained scintillator hodoscopes measure track

* 5 days of good data taken with the displaced vertex trigger: 8×10^{15} POT

Status and prospects

Nuclear physics program:

Probe sea quarks in the proton

E906, unpolarized targets (2012–2017)

E1039, polarized targets (2019–2021) The **particle physics program** can run parasitically

- * Parasitic searches for dark photons approved 2015 (E1067)
- Spring 2017: Displaced dimuon trigger installed
 - * Two new fine-grained scintillator hodoscopes measure track
 - * 5 days of good data taken with the displaced vertex trigger: 8×10^{15} POT

Plan for 10¹⁸ POT with & without displaced trigger

- 2. Future: installation of an EM-Cal?
 - Larger luminosities? How feasible is O(10²⁰ POT)?

Muon vs. electron signatures

Future: installation of an EM-Cal?

What is the physics case? Good identification of electrons vs. pions

Access to: * lighter dark sectors (A' \rightarrow e⁺ e⁻) * squeezed dark sectors (X₂ \rightarrow X₁ e⁺ e⁻) * dark sectors decaying hadronically (S \rightarrow π⁺ π⁻)

Electron signatures also have smaller backgrounds (muons are very penetrating particles)

What is the comparison of the physics reach? ...

A huge dark photon production

A huge dark photon production

The reach for the minimal A' model

The reach for the minimal A' model

Berlin, SG, Schuster, Toro, 1804.00661

Backgrounds for <u>muon</u> signatures under investigation by the collaboration,

using the ~10¹⁶ POT data set This search can be done already now!

See Gardner, Holt, Tadepalli, 1509.00050 for the muon reach as well

Inelastic DM & displaced decays

Spectrum of Inelastic DM (IDM) models: χ_1 (DM), χ_2 (DM excited state), A' (mediator)

Inelastic DM & displaced decays

Spectrum of Inelastic DM (IDM) models: χ_1 (DM), χ_2 (DM excited state), A' (mediator)

Copiously produced at fixed target experiments

 $\epsilon B^{\mu
u}A'_{\mu
u}$

 Δm_1

(small)

SM

A'

 χ_2

 χ_1

mass

The reach for IDM

Berlin, SG, Schuster, Toro, 1804.00661

see also Izaguirre, Krnjaic, Shuve, 1508.03050

SeaQuest has a good reach also to smaller mass splittings (up to $\Delta \sim$ a few %)

Beyond dark photon models...

Beyond dark photon models...

Many new signatures to explore

A (very incomplete) list: New ideas? Signature Dark particle in progress $\pi^{-}\mu^{+}$ Heavy neutral lepton Altmannshofer. $K^-\mu^+$ Heavy neutral lepton Batell, SG $\mu^+\mu^- + MET$ Inelastic Dark Matter $e^+e^- + MET$ Inelastic Dark Matter $\mu^+\mu^-$ Dark photon & dark scalar This e^+e^- Dark photon & dark scalar talk Only with Axion like particle $\gamma\gamma$ **EMCal** $K^{+}K^{-}, \pi^{+}\pi^{-}$ Dark scalar upgrade $\gamma \gamma + \text{MET}$ Hidden neutral SUSY $\mu^+\mu^-\mu^+\mu^-$ Dark scalar/dark photon model $\mu^{+}\mu^{-}e^{+}e^{-}$ Dark scalar/dark photon model $e^{+}e^{-}e^{+}e^{-}$ Dark scalar/dark photon model

Conclusions & Outlook

Fermilab can cover a <u>crucial role</u> in the search for dark sectors: the SeaQuest experiment

Unique features (compared to other beam dump proton fixed target experiments): compact geometry; sensitivity to soft signatures

Minimal dark photon & dark scalar; Inelastic DM; axions; strongly-interacting DM models can be broadly explored

Additional models that SeaQuest can explore? Particle physics case? Larger luminosities? Upgrades (EMCal upgrade)?

1. The reach for the minimal A' model

(Reach for EMCal upgrade)

