Dynamics and RG evolution
of BH binaries via EFTs

BAPTS, October 2014
Walter Goldberger
Yale U.

Based on: W.G,, A. Ross, I. Rothstein ; PRD ‘I 3

W.G. + Rothstein, ’04.



Motivation:

Gravitational dynamics of radiating classical BH (or NS) binary systems in the non-relativistic limit
are experimentally relevant (LIGO/VIRGO, LISA,...)

\' ‘\

Even for v <1 | the non-linear nature of GR makes this a difficult problem, involving a hierarchy
of length scales

Gravitational radius: T'g = QGNM
Physical radius: TS(: g for BH)
Tg~Tsg >T > A
Orbital scale: T
Radiation wavelength A\

v

Experiments will be sensitive to at least U6 corrections beyond Newtonian gravity (Thorne et al
1994). Numerical GR results also motivate computing higher order corrections.



In the NR limit U/C <& ] these scales are correlated:
2 3
T~ Ty /v A~orfv~r /v
Thus at a fixed order in velocity (“Post-Newtonian expansion”), physics effects from all these

scales may appear.

This motivates an EFT formulation of the binary inspiral problem (VWG+I. Rothstein, 2004).
Why EFT?

Separation of scales
Manifest power counting in expansion parameter.
Systematic treatment of UV/IR divergences.

Model independence by including all Lagrangian terms consistent with symmetries (in GR, diff.
invariance).

Resummation of non-analytic terms via the RG.

The correct set of EFTs for the binary system has properties in common w/ its gauge theory
counterparts (HQET, NRQED/NRQCD,...)



Tower of gravity EFTs:
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R =0

Full theory:

J

uv

Finite size
S = SgH + Spp

uv

2-body
(“N RG R”)

Uuv
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Radiation

(multipole+non-
linear GR)

J

IR matching

€« 7)o = 7“5/"“(2 "“9/7“7 BH)

IR matching

«—— 1 =714/7(=v?,NR case)

IR matching

ne = r/A(= v, NR case)

————
n3s = ry/ A= v>, NR case)

Independent EFTs with distinct expansion parameter coincide in PN limit.
UV divergence in EEF'1'; 1 1 corresponds to IR effect in EEF'T;



The EFTs:

At each stage in the calculation, the relevant modes are worldline localized
(0+1) dim d.o.f’s with local SO(3) indices, coupled to gravity.

Consider first isolated BH/NS. Then these dynamical moments are just the
normal (or “quasi-normal”) modes of the field theory (matter+gravitational)
that makes up the compact star.

Heuristically, matching onto the worldline EFT is just dimensional reduction:

4 (M)

r > T
T p— “ ¢£(T)

: (=0,1,2, -



eg, for a Schwarschild black hole, the spectrum contains an infinite tower of
modes. In this case there are some zero modes:

Mode Fregq. Jt
m(\) 0 0
zh () 0 1+
wij()\) (spin) 0 1™

there are also massive “‘states’’:

£ =2 =3 =4

0.37367 -0.088961 | 0.59944 -0.092701 | 0.80918 -0.09416 1
0.34671 -0.273911 | 0.58264 -0.281301 | 0.79665 -0.28443 1
0.30105 -0.473281 | 0.55168 -0.479091 | 0.77271 -0.47991 1
0.25150 -0.705141 | 0.51196 -0.690341 | 0.73984 -0.68392 1

Lo b = o=

Table 1: The first four QNM frequencies (wM ) of the Schwarzschild black hole
for £ =2,3, and 4 [135]. The frequencies are gwen in geometrical umits and for
conversion mto kHz one should multiply by 2w (5142Hz) x (Mg /M).

(from Kokkotas and Schmidt, gr-qc/9909058).



Effective Lagrangian is built from these modes and the gravitational field G, (CC)
At long distances, EFT of worldline localized modes coupled to curvature:

S=58gy + Spp
(h=c=1)
W Spg = —2m2 / da/GR(z) (m3, = 1/(32rGx))
zH(A)
4 and the gravitational “Wilson line” action (WG+Rothstein, 2005)

Spp = — / dr(N)m(X\) — / dz* Loy (N) wi (z(7))

g

(Proper +3 / dr(\) %b()\)Eab(x()\))Jr% / dr(N)QY (N)Bap(x(N))

€a=1,2,3 BH spin=rotating frame 65’2172,3 (see R. Porto gr-qc/
: 0511061, and S. Endlich et al, arXiv:1405.7384) = non-linear
realization SO(3,1)/S0(3)
¢ Dynamical _ m()\) (WG,Ross, Rothstein 201 3)
mass mode=
Curvature in comoving frame: Egp = egefv“v”Rwyg = “electric Riemann tensor”

B, = —egegv“v’\ewpaR[gAp" — “magnetic Riemann tensor”



For a Schwarzschild BH, the ¢ > 2 modes are “heavy,” w/ Tswn, ~ O(1) . However, because

Im w,, #0

integrating out the dynamical quadrupole (,;()\) would result in a non-local worldline effective
action. We have no choice but to keep them and the theory, and relate any observable quantity to

the “response functions”

<QE,B o QE,B>

Classically we only need to keep the two-pt. function. In the rest frame of a (non-spinning) BH:

0 1 2
/dajoewmj <TQaEb(O)Q£l(xO)> — _5 5&0519(1 =+ 5ad5bc _ §5ab5c:d F(Cd),

(this is a classical object, related to the graviton propagator in the BH background). The
imaginary part is related to the graviton absorption cross section (WG + Rothstein, 2005)

The function

w?)

Oabs,p(W) = ImF(w).
P 2m5,




Compare to the result in the full theory (Starobinsky; Page, 1970):

1
Oaps.p(W) = EKMT S,
—_— ImF(w) = 16G3ym°w/45

This result can be used to predict energy dissipation by BH horizons in two-body bound state
(WG+Rothstein, 2005)

d FPops 1 Gy Z o ()

— w2 -5I:|qij

)2
dw - T 6472 |

azb

Time averaged rate of energy dissipation:

2

32 \4 (x - v)?
P,y = G —— 1+ 32
: 5Nm“<m“‘ ww>




The real part was of the function encodes tidal response to an applied curvature field

1 Induced
(Qap(w)) = ——F(w)Eab(w) —  quadrupole
2 moment

This was calculated by Steinhoff et al (2013) by comparing full BH and EFT:

—T ReF(w) = 0 + O(w?)

i.e no static tidal response for a 4d Schwarzschild BH!(?) (see also Kol+Smolkin, 201 |
for d#4 ).

Note that because F(w) ~ G?\r, finite size effects for a BH do not arise until “4 PN” ( v8) order.
To a good approx they are point objects. However, expect some enhancement for NS

rns/Ts ~ 10

although difficult to get model-independent results for response functions in this case.



EFTIl: 2-body bound state

This is a theory of 2 pt non-relativistic particles, interacting gravitationally
and emitting radiation:

S = SgH + Spp
where now,
Spp=— Y /dTama s /dn,, (PE2 +PB2) 4.
CL:1,2 CL:1,2

ignoring spin, finite size, etc.



The gravitational “Wilson line”

W = expil'[h, z,] = /[Dhﬂ’/]b.c’seism’h’xa]

generates all the observables of the (classical) binary system.

Diagrammatically: »
o
BH, —. . e
W=+ % % ?{: L.
BH2 o > * o & > le
%hw

_ -.>(BH irreducible diagrams)

where we split up the metric into a background field and a “fluctuating

part”: Guv = Nuw + Ny + By

background -/ \—— fluctuation

and integrate out fluctuations.



For example,

[lh=0,2q] = /dtL(Xa(t),Xa(t)) — two-body

Lagrangian

generates the equations of motion for the BH trajectories

The linear term in the background defines an effective energy-
momentum tensor:

_ 1 }
F[h :733&] — ... QmPl /d4wT,UV(x)h'ul/ 4.
aluT'uV (x) — () (Ward id. for diff

invariance)

which can be used to compute radiation at infinity



In particular, with standard in/out (Feynman) b.c.s, graviton emission amplitude is

Anma(k) = [ dae™ e, (h )T (@

and the graviton emission rate over 1" — 00
1 d’k
T (2m)32|k|

yield time-averaged energy and momentum emission rates:

(PH) gy = / kidDy (K),
(J) = Q/ndrh:2(k) — 2/ndI‘h:_2(k),

dl'n (k) = An(k)[*,

Using in/in boundary conditions (as in cosmology) gives instantaneous
observables, e.g. radiation field at infinity:

h(x — 00,t) = /d4yDLej;a5(a:‘ — )T (y)

which yields the time-dep. waveform seen in the detector.



To compute the generating function 1}/ one could use, standard covariant
Feynman rules obtained by expanding  Sgu = —2m3, /d4w\/§R

Juv — Nuv =+ h,uv/mPl

L, V > a, B L (Feynman
w/ e.g VYV V¥ = 13 P cauge)

However, these Feynman rules are not optimal optimal for the NR limit v < 1
The diagrams don’t have manifest power counting in the exp. parameter:

> > > >

0
~vf ot ~ U

> > Pl >

| ! (NOT A
PROPAGATOR!)




The problem is that the diagrams involve momentum integrals over all
momentum regions. However, for NR kinematics, two momentum space
configurations dominate:

“potential”: (E ~ 0,p~ 1/r) (off-shell)
“radiation”: (E ~uv/r,p~v/r)

The solution to this problem is well known from NRQED/NRQCD and
HQET. Decompose graviton into distinct momentum modes and “pull

out” short scales: / 9, Hy ~ —Hy
T

G () = Ny + My () + ) €™ *Hy,,, (2°)

/ k

_ U —

B ~ 2R \\\\\\\\\\\\

T kr\.zl

r

The radiation mode can be regarded as long wavelength background field
in which potential gravitons propagate



In addition, need to multipole expand the couplings of the radiation mode to the particles
and to the potentials. This yields an effective Lagrangian with manifest power counting in
velocity:

CNANNNNANN

~ VI ~ 0?2 VL

Pt. particle-Newton
potential Radiation-potential

interaction: interaction

L]
L]
L]
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L]
L]
L]
L]
L]
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* A4
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Ps >
P A4
>
>
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>
-
A4

Potential graviton cubic
self-interaction

By connecting vertices together, generate the 2-body potentials and the
interactions of matter with radiation. Drop quantum corrections ~ /L < 1



Leading order:
Newton

=

(1687)

T
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|
|
| a
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+

(a)

Next-to-leading (IPN): Einstein-Infeld
Hoffman Lagrangian (1938)
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2PN (1981-2002):  Some of the diagrams are (Gilmore+Ross, PRD 2008)

P -~ ,/ g =~ \’. .- - . .\ /,
----¢ - n -4 P KN
T \ -~ - -o-9 ¥ ) |
R | *® ‘\.
6
miv)y
Lopn =
2PN 16
Gmymo [ T S 3 . 3 . . 1 .
+ . (SV} = /—lval C Vg — {—lvfn-vln-vz + vavﬁ + g(Vl -vz)z
— lv'f(n-vz)2 +-n-vin-vavy - ve + —(n-vi)*(n- va)?
8 4 16
. 1 5 3 7 1 2
+Gmlm2 gal -V §a1 Vil V) — zal VoIl -V — gal ' n(n ' Vz)
15 1 reducible to one-loop integrals via
+Gmymer| —a; ra; — —a;-nasz ' n )
16 16 IBP: -1y, ,
G myms [T . o 1 1 : /
PO (v vt mev)?) (2m)7=1 [(k + p)?][k?)°
G'mymy | 3G mim; + (1o 2), (simplification of PT via field redefs:

273 213 B. Kol+M. Smolkin, 2007-2008. )



3PN (1998-2003): Recently computed by Sturani+Foffa (2011). Computer
generated Feynman diagrams plus table of standard Feynman integrals.

/i

AN

wempones 7)) SN [S) A P

\

N A A5\

OPN 1PN 2PN 3PN 4PN

1

# topologies vs.
PN order

# of diagrams/topology/
fixed PN order.

Partial progress in EFT computation of 4PN potentials has also been
made. See Sturani + Foffa, PRD 201 3.



Inclusion of BH spin into the EFT: (R. Porto, PRD 2007)

“Hyperfine” (Spin-spin) interactions:  (Porto+Rothstein, PRL 2008)

;,S;N - S Sz —Uy - Vo — 30Uy - iU - 1L — (Uf . Uﬁ) — Sl ' U]S;g U2 —Sl ' ‘UzSz U1 + ’1 '
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3G5 (my + ma)
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(5*1-52—35"1-135,77),

G2 _orbit couplings:  (Porto+Rothstein, PRD 2008)

G m . . . . ~
- oW, 27:,, 3 [S1°S1°(3n'n — 69) = 251 (v x 81)* = 3(m - v1)(n x 81)¥)]
G ooy . 15 13 3 y 7 ‘
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One graviton sector: radiation couplings (wG+A Ross,PrD
2010)

Integrating out potential modes gives the couplings of 2-body system to
radiation: 7

THY (66666 e (66666 BW
- . . -+ . .

0 2

vV vV
- ? 15e ? =
| |
I - |
-+ 000000 hu,, - |
| |
> s > > >

|
=
Ny

(Ist graph=LO. Last three graphs are NLO).



The resulting action consists of a set of multipole moments coupled to the
worldline of composite object. In the CM frame,

0 =25 _ 9,
\ zlz /

_ 1 ) 4 1 .
/d$0 [IJ( )RO’LO]+ SI,Jk( O)RO]zk+§IE7k(xO)kaOZOJ+]

{ =3g

I'[h] =

2mpl

For example, the quadrupole moment to NLO (Will+Wagoner, 1970)

U
D _ 3 00 aa E 2"00_%'% k i g1 TF 4
_ I — = /dx[T +T +42XT 3T x][xx] + O(v*)
:E meX, x| 1+ V E E M 2XaXX])
|x —Xb\ dt
a N b a
4 d

— (Xa - VaX' %) — traces + O(v?)



This formalism has been used recently to compute spin-induced moments
at 3PN order (Porto+Ross+Rothstein 201 1)
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R (Double expansion: 72 =7r/A~wv
EFTII: Radiation o i )

(WG+Ross, PRD 2010)

This is a field theory of radiation coupled to a point object with multipole
moments. Most general diff. invariant action:

C?W S—_ / dr(\)m(\) — / 029 Loy (N) w? ((7)) +% / dr (N Ly (A E™ (7))
:i:?}:u:jj/‘ _g /dTJab()\)Bab(ZE) —|—%/dTIabc()\)vcEab(iB)—|—'”

The time evolution of the moments arises from short dist.
(potentials) as well as radiative corrections (radiation reaction).

I
€a=1,2,3

¢ Can regard the moments as time-dependent Wilson
coefficients (coupling constants). Radiative corrections in the
EFT will generate RG flows for them.



Can use this theory to compute observables at infinity, even if the short
distance time evolution of the moments is not known. For example, the
graviton emission amplitude involving the |st three moments:

Iij Jz'j Iz’jk

iAn(k) = E n g + Z 4.

e (k, h) [k?l"f (k) + %Ikl k'™ J7 (k) — %ka’f k) + -

4m Pl

Determines the time averaged energy loss rate of the composite system:

= ()"} 5 (2 0) Y S ()



UV and IR divergences in radiation

Focus on the £ = 2 channel. The amplitude to second order is

[ I m - L a1 s -S|

19 13 3,1
Sz(ﬁ( )2—5nvnv2 AR 2)

Gym
(1) Uyt
CESQ

9, , U

b
_|_ T(S] 'n) (é(vl +V§) - EVI'VQ - En'vln'w) +2V1 -Slvl-Sl

= v 8wy 8y - B vin-Syvy 8y 4 9 vom- Syvy -8y + 3 vin- Sy 8

Lk 4 ;’”Gl -8 a4 142 -0
—%(S )+ (@ "+v1xSI \l/HQk
IJ m m m m
+ * +
Lk | k

Non-linear interaction of emitted gravitons with multipole moments
introduces both UV and IR divergences.



Leading IR divergence: The order ns ~v° correction to the amplitude:

I4 m

(0, q) Can be reduced to to scalar Feynman integrals of
| the form

- [ dilq (@®)"
I (k|) = / (2m)d-1 k2 — (k 4+ q)2 + ie

(k| k +q)

(n > —1)

Note that for 7. = —1 this has an infrared divergence.
As q—0 (d=4- 2

- @2m)ita?k? — (k+a)?+ie T | 2n)3q2(k-q)  ern

Physically, this is the familiar “Coulomb” singularity: nearly on-shell graviton
interacts with the long range 1/r potential of the composite object.



The complete result is

) & m

11 ™ 203
— d—4) [ — + 7/
6+( )<8+72>]

Note that to order Gymlk| ~ v°, the IR singularities drop from 2
g P Al

A 2

= 1+ 2Gymlk| + O(1/e75)
Aro

The “Coulomb tail” is responsible for non-analytic corrections to the radiated
power in gravitons. Eg,

8191



Subleading IR divergences:

The following order 52 ~ ¢® diagram is also IR divergent by power counting

I m m

- (d—4)
(k +2@e)€w] S [_ 2 11 1
e

= Aro (Gymlk|)® [— (d-4)7r 3 (d—4)rr
|k

but one can check that all IR divergences cancel out of physical quantities, up
to higher order terms in perturbation theory. E.g:

" w2
2
- + 2 Re

is independent of 1/€rR

IY m m

|A0(n§)



We also showed that the leading 1/€IR poles at each order; from the
diagrams

I m m m

TYY Y

O(1/err) O(1/¢tr) O(1/€rR)

sum up to a complex phase in the emission amplitude,

201G y MW
(d — 4)IR

A = exp [ Agnite — A7 = IR finite

so poles drop out of physical predictions.

The handling of IR divergences in the waveform h (t, X — OO) has
been recently addressed.  (Porto, Ross, Rothstein, arX|v|203 2962).



Leading UV divergences

The following graphs at order 73 ~ v°

IY m m I] m m

are logarithmically UV divergent.

This reflects the interaction of nearly on-shell outgoing graviton with the 1/7~
potential of the two-body system. Eg.

14 m m 1

q]

/ddq 1 1
— | 2n)fali®— (k+ a2+ e

/ d>q 1 1
(2m)° [a]®  euv




The full result at second order in the expansion is then

I m m IY m m I m m

(doable via MB)

——
A - k2 + e e 1 11 1 2 1777
A, = (Gymlk|)” [_( T2 )ew] X[_z 2.6 12 14700
n° K €IR €IR



RG flows

UV divergences correspond to singularities in the multipole expansion,
first at 77§ ~ v® . In the EFT, these divergences are absorbed into the

Wilson coefficients, i.e, renormalization of the multipole moments

d 214
@[R( W, 1) = 105(Gwa)2]£(w,M),
- 1 — 24 (G ymw)?
# ILL 105
Lij(w, p) = o Iij(w, po)-

This can be used to predict the pattern of logs ~ 77277, logn M in
quadrupole radiation:

, - : )1 5¢
’ Alw) = él?é(Cr';\;mw)2 In -~ + 91)92(6'wa)4 n2 £
A"TO (wa #’0) leading log 105 Ho 11025 Ho
39201376

_ 61,3 %< ...
3479875 (CNmw) "o




For circular orbits, our prediction is

Errn  _inzpe 1712 1465472 15 5 2508888064 5. 3
2 =T Y =1 — 1 In? v — 1
Bo 050 MU oy UM YT Taamasrs UM U T

This was confirmed recently by BH perturbation theory (R. Fujita, arXiv:1211.5535)
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This result can be extended to the ¢/ > 2 moments, using the methods
developed in Ross,arXiv:1202.4750. The general pattern of logs is

Ad(w)l? an"L[ ) + OOPL) + OGPL) + O(PL) + -,

Sommerfeld \ Fixes the series of logs

4Gy
factor  S(w)= k|

1 — exp (—47nGymw)’

Maybe useful for the construction of phenomenological templates...

Other recent results in the radiation sector:

Radiation reaction at 3.5PN (1993-1995) (Galley+Leibovich, 2012). 4
PN in progress (2011 Wang et al).

3PN Flux and 2.5PN waveform for spin-induced moments
(Porto, Ross, Rothstein, 2010,2012).

Hereditary terms in radiation reaction at 4PN (Foffa+Sturani,
201 1) (Blanchet et al 2010)



Dynamics and RG evolution of the mass

Mo d e (WG, Ross, Rothstein, PRD 2013)

As we've seen, either a single compact object or a composite binary
system is described by an EFT of the form

S = —/dT()\)M()\) + % /dT()\)Iij()\)Eij()\) +oe

So far we have neglected the (slow) time dependence of the mass
mode. The fact that mass is dynamical is a requirement of the
renormalizability of the EFT



To track the time evolution of the mass mode we must employ in/in
boundary conditions. Thus we compute the following matrix element

2 oI’
/— _MV

(in| T (x)]in) =

pry\
9, (T") = 0
where the in/in effective action as a function of sources is

NNy :/Dh—|—($)Dh—(m)eiS[ng,M,I]—iS[g,M,I]’

In terms of diagrams:

. i + [«-‘\ + h .

m JU JY & JU

where we drop terms that vanish in dimensional regularization.



Expanding in the k — 0 limit (multipole expansion) one finds (in rest frame)
00

= 5% (x) M ()
hoo : hoo
AT Gy [ e
7ii 7ii 7ii Tii — 53(X) ? o dt,li(j)(t/)li(j)(t/)

(net result for {(T°°) is causal, depending only on
the past history of the sources)

The time evolution of the mass mode is fixed by the Ward identity 0, (T"") = 0.
To leading order in the multipole exp. this is just

d /00 . G
AT (@) =0 === w1 =170 (1)
Upon time averaging we reproduce the std. LO result (M) = —%(ﬁ?éﬁ}

More generally, 8# <T““V> — () determines how all the moments
evolve in time due to radiative corrections (radiation reaction)




Note that the computing the diagram

-

Iz I

involves the Feynman integral

[ d"'q 1 T(3/2-4d/2) 4 4
' / <

27T)d_1 q? + w? o (47T)(d_1)/2 “

Although formally finite in dim. reg.as d — 4, the integral is linearly UV
divergent by power counting. A time dependent mass counterterm would
be needed to renormalize this divergence.

This is why, in the EFT, the mass must become a dynamical variable,
whose evolution is fixed by the condition the Ward id. 8, (TH) = 0



At the next order in the expansion, the UV divergences are logarithmic:

Y 4D
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Leading to RG evolution of the mass mode (even under time reversal)

d 2G2 M
— M(t, ) =
M (t, ) (

21— 2aAP1F + 1715 (1)

(on the RHS, to the order we work in, we treat the mass as a constant. We

. : . 1 [T
may as well take it to be the time averaged mass 7= lim / dtM (1) )
T

T'— o0



Heuristic interpretation of RG running;

M(t, ,u) is the conservative mass (not including on-shell
radiation out to infinity). Varying the observation

radius from = 1/r to pu = 1/ R changes how
much backscattered radiation is kept in the definition

of M(t, )

To NLO M(t, ,u) — Bondimass. M = /dSXTOO — ADM mass



Can solve the coupled RGEs for M(u,t) , L;(u,t) perturbatively:

3 3 4 4 5 5
IV, 107 (110 4, 11449 (1510

1 - In%y — -
MU 0z ot Y T132300 2

M(p) _

1
— = rSlngv+---,
My 2 M;

where we have run from g ~r, =2GyM, — p = w to minimize “large logs”

Applications to high order log corrections to

Graviton emission: M — M(u = w)

(3) 7(3) (4) 7(4)
A(w) 2 x (L1 1077 (131570
:1 ) o zg_zg 3 1 ’L]_Z] 5 12
‘Ao(w) + TrsW 5 Mg rowlinv + 190 Mg rewliln” v +

“Lamb shift”: Radiative correction to bound state energy:

2

448
E(Q):—]’I\}O T vInv + ...,

consistent with Blanchet et al 2010. (see also Galley, Leibovich, Ross; in progress).



Summary and outlook

EFT methods provide a complete understanding of the dynamics of
non-relativistic binaries. It has been used to obtain new results
(particularly for spin) not yet achieved by traditional PN methods.

Some possible future directions:

On-shell amplitude methods?  (see Neill+Rothstein, 201 3).
RG from RW for ¢> 27

Other kinematic regimes!?



