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Motivation:
Gravitational dynamics of radiating classical BH (or NS) binary systems in the non-relativistic limit	


 are experimentally relevant (LIGO/VIRGO, LISA,…)

rg = 2GNM

rs(= rg for BH)

Gravitational radius:   

Physical radius:

Orbital scale:

Radiation wavelength

r

�

Experiments will be sensitive to at least         corrections beyond Newtonian gravity (Thorne et al 
1994).   Numerical GR results also motivate computing higher order corrections.

v6

r

rsrs �

Even for                 , the non-linear nature of GR makes this a difficult problem, involving a hierarchy	


 of length scales

v ⌧ 1

rg ⇠ rs � r � �



In the NR limit                      these scales are correlated:

This motivates an EFT formulation of the binary inspiral problem (WG+I. Rothstein, 2004).    
Why EFT?

Separation of scales 	


!
Manifest power counting in expansion parameter.	


!
Systematic treatment of UV/IR divergences.	


!
Model independence by including all Lagrangian terms consistent with symmetries (in GR, diff. 
invariance).	


!
Resummation of non-analytic terms via the RG.	


!
...

v/c ⌧ 1

Thus at a fixed order in velocity (“Post-Newtonian expansion”),  physics effects from all these 
scales may appear.

r ⇠ rg/v
2 � ⇠ r/v ⇠ rg/v

3

The correct set of EFTs for the binary system has properties in common w/ its gauge theory 
counterparts (HQET, NRQED/NRQCD,…)



Tower of gravity EFTs:  

Independent EFTs with distinct expansion parameter coincide in PN limit.	


UV divergence in                 corresponds to IR effect in EFTi+1 EFTi

Full theory:	


Rµ⌫ = 0

Finite size	


S = SEH + Spp

2-body	


(“NRGR”)	



⌘0 = rs/r(= rg/r,BH)

⌘1 = rg/r(= v2,NR case)

⌘2 = r/�(= v,NR case)

⌘3 = rg/�(= v3, NR case)

Radiation
(multipole+non-
linear GR)

UV

UV

UV IR matching

IR matching

IR matching



The EFTs:
At each stage in the calculation, the relevant modes are worldline localized 
(0+1) dim d.o.f ’s with local              indices, coupled to gravity.SO(3)

Consider first isolated BH/NS.  Then these dynamical moments are just the 
normal (or “quasi-normal”) modes of the field theory (matter+gravitational) 
that makes up the compact star.

Heuristically, matching onto the worldline EFT is just dimensional reduction:

h = e
−iωℓτ

hℓ(x)

D
2

⊥hℓ(x) = ω
2

ℓ hℓ(x)
φℓ(τ)

ℓ = 0, 1, 2, · · ·
ℓ = 0, 1, 2, · · ·

r ≫ rs

x

µ(�)



eg, for a Schwarschild black hole, the spectrum contains an infinite tower of 
modes.  In this case there are some zero modes:

Mode Freq. J
P

0

1
+

(spin)

0

1
−0

0

there are also massive “states”:

(from Kokkotas and Schmidt, gr-qc/9909058).

m(�)

x

µ(�)

!ij(�)



BH spin=rotating frame                 (see R. Porto gr-qc/
0511061, and S. Endlich et al, arXiv:1405.7384) = non-linear 
realization 

eµa=1,2,3

Effective Lagrangian is built from these modes and the gravitational field 	


At long distances,  EFT of worldline localized modes coupled to curvature:

gµν(x)

S = SEH + Spp

SEH = −2m2

Pl

∫
d4x

√

gR(x) (m2

Pl = 1/(32πGN ))
(~ = c = 1)

Spp = �
Z

d⌧(�)m(�)�
Z

dx

µ
Lab(�)!

ab
µ (x(⌧))

(Proper 
time) 

w/

SO(3, 1)/SO(3)

v

µ = ẋ

µ

eµa=1,2,3

x

µ(�)
and the gravitational “Wilson line” action 

Dynamical 
mass mode=

m(�)

(WG+Rothstein, 2005)

(WG,Ross, Rothstein 2013)

Curvature in comoving frame:                                                 Eab = e↵ae
�
b v

µv⌫Rµ↵⌫� =

+
1

2

Z
d⌧(�)Qab

E (�)Eab(x(�)) +
1

2

Z
d⌧(�)Qab

B (�)Bab(x(�))

“magnetic Riemann tensor”Bab =
1

2
e↵ae

�
b v

µv�✏↵µ⇢�R�
�⇢� =

“electric Riemann tensor”



For a Schwarzschild BH, the            modes are “heavy,” w/                       .  However,  because 

particle action of the form

Seff [x] = −m

∫

dτ +
α

2

∫

dτEµνEµν +
β

2

∫

dτBµνBµν + · · · . (19)

In this equation we assume for simplicity that the background field is a vacuum solution, so

that all operators can be written in terms of the ten independent components of the Weyl

tensor, the five electric-type parity components Eµν = Cµανβvαvβ, and the five magnetic

components Bµν = 1
2ϵµαβρCαβ

νσvρvσ. By dimensional analysis, we expect α, β ∼ r3
s . Other

operators, involving the Ricci curvature can be removed by a field redefinition of the metric.

As in the previous section, we take the presence of absorptive processes to signal the

existence of a large number of worldline modes that interact with gravitons. Although we

do not know what this wordline theory is, in the spirit of effective field theory we determine

the interactions by writing down all possible operators consistent with the symmetries. The

simplest possible couplings, involving two derivatives are given by

S = −
∫

dτQE
abE

ab −
∫

dτQB
abB

ab + · · · , (20)

where Eab = ea
µeb

νE
µν , Bab = ea

µeb
νB

µν . The operators QE,B
ab are electric and magnetic type

parity operators composed of the worldline degrees of freedom. Terms with more derivatives,

which are suppressed in the low energy limit, are not shown. Using this equation, the

graviton absorption cross section is given by

σabs(ω) =
ω

8m2
P l

∫

dx0e−iωx0 [

ω2ϵ∗abϵcd⟨QE
ab(0)QE

cd(x
0)⟩ + (k × ϵ∗)ab(k × ϵ)cd⟨QB

ab(0)QB
cd(x

0)⟩
]

,

(21)

where (k × ϵ)ab = ϵacdkcϵdb. In terms of the two-point function
∫

dx0e−iωx0⟨TQE
ab(0)QE

cd(x
0)⟩ = − i

2

[

δacδbd + δadδbc −
2

3
δabδcd

]

F (ω), (22)

the cross section reads

σabs,p(ω) =
ω3

2m2
P l

ImF (ω). (23)

Matching to the result in [? ],

σabs,p(ω) =
1

45
4πr6

sω
4, (24)

we find ImiF (ω) = 16G5
Nm6θ(ω)ω/45. Here we have used the equality of the magnetic and

electric corrrelators, which follows from the duality invariance Eab → Bab of the equations

for gravitational perturbations in black hole backgrounds.
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Im !n 6= 0

rs!n ⇠ O(1)

integrating out the dynamical quadrupole                   would result in a non-local worldline effective 
action.   We have no choice but to keep them and the theory, and relate any observable quantity to 
the “response functions”

Qab(�)

⟨QE,B · · ·QE,B⟩

Classically we only need to keep the two-pt. function.   In the rest frame of a (non-spinning) BH:

(this is a classical object, related to the graviton propagator in the BH background).     The 
imaginary part is related to the graviton absorption cross section (WG + Rothstein, 2005)
The function 

particle action of the form
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∫
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tensor, the five electric-type parity components Eµν = Cµανβvαvβ, and the five magnetic
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operators, involving the Ricci curvature can be removed by a field redefinition of the metric.

As in the previous section, we take the presence of absorptive processes to signal the

existence of a large number of worldline modes that interact with gravitons. Although we

do not know what this wordline theory is, in the spirit of effective field theory we determine

the interactions by writing down all possible operators consistent with the symmetries. The

simplest possible couplings, involving two derivatives are given by

S = −
∫

dτQE
abE
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∫

dτQB
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ab + · · · , (20)

where Eab = ea
µeb
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µeb
νB

µν . The operators QE,B
ab are electric and magnetic type

parity operators composed of the worldline degrees of freedom. Terms with more derivatives,

which are suppressed in the low energy limit, are not shown. Using this equation, the

graviton absorption cross section is given by

σabs(ω) =
ω
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P l

∫

dx0e−iωx0 [

ω2ϵ∗abϵcd⟨QE
ab(0)QE

cd(x
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∫
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ab(0)QE

cd(x
0)⟩ = − i
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[

δacδbd + δadδbc −
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3
δabδcd

]

F (ω), (22)

the cross section reads

σabs,p(ω) =
ω3

2m2
P l

ImF (ω). (23)

Matching to the result in [? ],

σabs,p(ω) =
1

45
4πr6

sω
4, (24)

we find ImiF (ω) = 16G5
Nm6θ(ω)ω/45. Here we have used the equality of the magnetic and

electric corrrelators, which follows from the duality invariance Eab → Bab of the equations

for gravitational perturbations in black hole backgrounds.

9
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Compare to the result in the full theory (Starobinsky;  Page, 1970’s):

ImF (ω) = 16G5

Nm6ω/45

This result can be used to predict energy dissipation by BH horizons in two-body bound state 
(WG+Rothstein, 2005)

Pabs =
32

5
G7

Nm6µ2

〈

v
2

|x|8
+ 32

(x · v)2

|x|10

〉

Time averaged rate of energy dissipation:



The real part was of the function encodes tidal response to an applied curvature field

hQab(!)i = �1

2
F (!)Eab(!) =

Induced 
quadrupole 
moment

This was calculated by Steinhoff et al (2013) by comparing full BH and EFT:

ReF (!) = 0 +O(!2)

i.e no static tidal response for a 4d Schwarzschild BH!(?)   (see also Kol+Smolkin, 2011 
for              ).d 6= 4

Note that because                        , finite size effects for a BH do not arise until “4 PN” (     ) order.	


To a good approx they are point objects.  However, expect some enhancement for NS

F (!) ⇠ G5
N v8

rNS/rs ⇠ 10
although difficult to get model-independent results for response functions in this case.	





EFT1I:   2-body bound state
This is a theory of 2 pt non-relativistic particles, interacting gravitationally 
and emitting radiation:

Spp = �
X

a=1,2

Z
d⌧ama +

X

a=1,2

Z
d⌧a

�
cEa E

2
µ⌫ + cBa B

2
µ⌫

�
+ · · ·

where now,

ignoring spin, finite size, etc.

S = SEH + Spp



The gravitational “Wilson line”

W = exp i�[

¯

h, x

a

] =

Z
[Dh

µ⌫

]

b.c’s

e

iS[h,h̄,xa]

generates all the observables of the (classical) binary system.  
Diagrammatically:

BH1

BH2

t

W = · · ·+ + · · ·

h̄µ⌫

h̄µ⌫

where we split up the metric into a background field and a “fluctuating 
part”: gµ⌫ = ⌘µ⌫ + h̄µ⌫ + hµ⌫

background

and integrate out fluctuations.

fluctuation

= e
P
(BH irreducible diagrams)



For example, 

�[h̄ = 0, xa] =

Z
dtL(xa(t), ẋa(t)) =

generates the equations of motion for the BH trajectories

The linear term in the  background defines an effective energy-
momentum tensor:

two-body 
Lagrangian

�[h̄ =, xa] = · · ·+ 1

2mPl

Z
d

4
xT

µ⌫(x)h̄µ⌫ + · · ·

which can be used to compute radiation at infinity

@µT
µ⌫(x) = 0 (Ward id. for diff 

invariance)



d�h(k) =
1

T

d3k

(2⇡)32|k| |Ah(k)|2,

In particular, with standard in/out (Feynman) b.c.’s, graviton emission amplitude is 

A
h=±2(k) =

Z
d

4
xe

ik·x
✏

⇤
µ⌫

(h, k)Tµ⌫(x)

yield time-averaged energy and momentum emission rates:

Using in/in boundary conditions (as in cosmology) gives instantaneous 
observables, e.g. radiation field at infinity: 

hṖµih=±2 =

Z
kµd�h(k),

hJ̇i = 2

Z
nd�h=2(k)� 2

Z
nd�h=�2(k),

and the graviton emission rate over T ! 1

hµ⌫(x ! 1, t) =

Z
d

4
yD

ret
µ⌫;↵�(x� y)T↵�(y)

which yields the time-dep. waveform seen in the detector.



gµ⌫ = ⌘µ⌫ + hµ⌫/mPl

w/ e.g 

SEH = �2m2
Pl

Z
d

4
x

p
gR

µ, ⌫ ↵,� =
i

k2
Pµ⌫;↵,�

k
(Feynman 
gauge)

To compute the generating function        one could use standard covariant 
Feynman rules obtained by expanding       

W

However, these Feynman rules are not optimal optimal for the NR limit  v ⌧ 1
The diagrams don’t have manifest power counting in the exp. parameter:

⇠ v?⇠ v2 + v4 + · · ·

(NOT A	


PROPAGATOR!)==



“radiation”: (E � v/r, ⌥p � v/r)

“potential”: (E � 0, ⌃p � 1/r)

The radiation mode can be regarded as long wavelength background field 
in which potential gravitons propagate

The problem is that the diagrams involve momentum integrals over all 
momentum regions.   However, for NR kinematics, two momentum space 
configurations dominate:

The solution to this problem is well known from NRQED/NRQCD and 
HQET.  Decompose graviton into distinct momentum modes and “pull 
out” short scales:

gµ⌫(x) = ⌘µ⌫ + h̄µ⌫(x) +
X

k

eik·xH
kµ⌫(x

0)

@µh̄ ⇠ v

r
h̄

k ⇠ 1

r

(off-shell)

@µHk ⇠ v

r
Hk



In addition, need to multipole expand the couplings of the radiation mode to the particles 
and to the potentials.   This yields an effective Lagrangian with manifest power counting in 
velocity:

By connecting vertices together, generate the 2-body potentials and the 
interactions of matter with radiation.   Drop quantum corrections

Radiation-potential 
interaction

⇠ v5/2/
p
L

⇠ ~/L ⌧ 1

Pt. particle-Newton 
potential	


interaction:

⇠
p
L

Potential graviton cubic 
self-interaction

⇠ v2/
p
L



L =
1
2

�

a

ma⌃v
2
a +

GNm1m2

r

Leading order:   
Newton 	


(1687)

Next-to-leading (1PN):   Einstein-Infeld 
Hoffman Lagrangian (1938)

LEIH =
1
8

⇤

a

ma⌥v
4
a +

GNm1m2

2r

�
3(⌥v2

1 + ⌥v2
2)� 7⌥v1 · ⌥v2 � (⌥v1 · n)(⌥v1 · n)

⇥

�G2
Nm1m2

2r2



2PN  (1981-2002):     Some of the diagrams are (Gilmore+Ross, PRD 2008)

(simplification of PT via field redefs:  
B. Kol+M. Smolkin, 2007-2008. )

reducible to one-loop integrals via 
IBP:Z

dd�1k

(2⇡)d�1

1

[(k+ p)2]↵[k2]�



3PN (1998-2003):    Recently computed by Sturani+Foffa (2011).   Computer 
generated Feynman diagrams plus table of standard Feynman integrals.

Partial progress in EFT computation of 4PN potentials has also been 
made.  See Sturani + Foffa, PRD 2013.

relevant topologies:

# topologies vs. 	


PN order

# of diagrams/topology/	


fixed PN order.



Inclusion of BH spin into the EFT: (R. Porto, PRD 2007)

“Hyperfine” (Spin-spin) interactions:     (Porto+Rothstein, PRL 2008)

        orbit couplings:     (Porto+Rothstein, PRD 2008)⇥S2�

=1 for BH



Tµ⇥ = +
h̄µ⇥

+

One graviton sector:  radiation couplings
Integrating out potential modes gives the couplings of 2-body system to 
radiation:

h̄µ⇥ +

· · · h̄µ⇥

h̄µ⇥

+

v0 v2

(1st graph=LO. Last three graphs are NLO).

(WG+A. Ross, PRD 
2010)



The resulting action consists of a set of multipole moments coupled to the 
worldline of composite object.   In the CM frame,

Eij =
⇧

d3x
⇤
T 00 + T aa +

11
42

x2T̈ 00 � 4
3
Ṫ 0kxk

⌅ �
xixj

⇥TF +O(v4)

=
⇤

a

maxi
ax

j
a

�
1 +

3
2
v2

a �
⇤

b

GNmb

|xa � xb|

⇥
+

11
42

⇤

a

ma
d2

dt2
(xa

2xi
ax

j
a)

�4
3

�

a

ma
d

dt
(xa · vaxi

ax
j
a)� traces + O(v4)

For example, the quadrupole moment to NLO (Will+Wagoner, 1970’s)

` = 2E ` = 2B ` = 3E

�[h̄] =
1

2mPl

Z
dx

0


I

ij
E (x0)R0i0j +

4

3
I

i,jk
B (x0)R0jik +

1

3
I

ijk
E (x0)rkR0i0j + · · ·

�

Iij



O(Sa)O(S2
a)

O(Sa · Sb)

(Porto+Ross+Rothstein 2011)
This formalism has been used recently to compute spin-induced moments 
at 3PN order 



EFTIII:   Radiation
This is a field theory of radiation coupled to a point object with multipole 
moments.   Most general diff. invariant action:

(Double expansion:           	


                                                    )

(WG+Ross, PRD 2010)

S = �
Z

d⌧(�)m(�)�
Z

dx

µ
Lab(�)!

ab
µ (x(⌧)) +

1

2

Z
d⌧(�)Iab(�)E

ab(x(⌧))

v

µ = ẋ

µ

eµa=1,2,3

x

µ(�)

The time evolution of the moments arises from short dist. 
(potentials) as well as radiative corrections (radiation reaction).

Can regard the moments as time-dependent Wilson 
coefficients (coupling constants).   Radiative corrections in the 
EFT will generate RG flows for them.

�2

3

Z
d⌧Jab(�)B

ab(x) +
1

6

Z
d⌧Iabc(�)rc

E

ab(x) + · · ·

⌘2 = r/� ⇠ v

⌘3 = r/rg ⇠ v3



Ṗ 0 =
GN

5

*✓
d3

dt3
Iij(t)

◆2
+

+
16GN

45

*✓
d3

dt3
J ij(t)

◆2
+

+
GN

189

*✓
d4

dt4
Iijk(t)

◆2
+

+ · · ·

Can use this theory to compute observables at infinity, even if the short 
distance time evolution of the moments is not known.   For example, the 
graviton emission amplitude involving the 1st three moments:

Determines the time averaged energy loss rate of the composite system:



Focus on the             channel.   The amplitude to second order is

UV and IR divergences in radiation

Iij

iA(k) = + +

+ + · · ·

!
Non-linear interaction of emitted gravitons with multipole moments 
introduces both UV and IR divergences.

↓ k

↓ k ↓ k

↓ k

+

↓ k

` = 2



Leading IR divergence:

(n ⇥ �1)

!
Can be reduced to to scalar Feynman integrals of 
the form 

n = �1Note that for                  this has an infrared  divergence.  	


As q� 0

↓ k

(0,q)

(|k|,k + q)

⇥
�

d3q
(2⇥)3

1
q2(k · q)

⇥ 1
�IR

Physically, this is the familiar “Coulomb” singularity:    nearly on-shell graviton 
interacts with the long range         potential of the composite object.1/r

!
The order           correction to the amplitude:⌘3 ⇠ v3

In(|k|) =
Z

dd�1q

(2⇡)d�1

(q2)n

k2 � (k+ q)2 + i✏

I�1(|k|) =
Z

dd�1q

(2⇡)d�1

1

q2

1

k2 � (k+ q)2 + i✏

(d = 4� 2✏)



The complete result is 

Note that to order                         , the IR singularities drop from GNm|k| � v3 |A|2

����
A
ALO

����
2

= 1 + 2GNm|k|+O(1/�2IR)

The “Coulomb tail” is responsible for non-analytic corrections to the radiated 
power in gravitons.    Eg,

Pv3 = PLO � (4�v3) Pv5 = PLO ⇥
�
�8191

672
�v5

⇥

= iALO

⇥ (iGNm|k|)

� (k2 + i✏)

⇡µ2
e�E

�(d�4)/2

⇥


2

(d� 4)IR
� 11

6
+ (d� 4)

✓
⇡2

8
+
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Subleading IR divergences:

The following order              diagram is also IR divergent by power counting⌘23 ⇠ v6

↓ k

= ALO (GNm|k|)2

� (k2 + i✏)

⇡µ2
e�E

�(d�4)

⇥

� 2

(d� 4)2IR
+

11

3

1

(d� 4)IR
+ · · ·

�

but one can check that all IR divergences cancel out of physical quantities, up 
to higher order terms in perturbation theory.  E.g:

���AO(⌘2
3)

���
2
=

2

+ 2 Re

is independent of 

( (| |
1/✏IR



We also showed that the leading                poles at each order, from the 
diagrams

1/✏IR

The handling of IR divergences in  the waveform                                has 
been recently addressed.      (Porto, Ross, Rothstein, arXiv1203.2962).

hTT
ij (t,x ! 1)

sum up to a complex phase in the emission amplitude,

O(1/✏2IR)O(1/✏IR) O(1/✏3IR)

 so poles drop out of physical predictions.

IR finite	

A = exp


2iGNm!

(d� 4)IR

�
A
finite

! |A|2 =



Leading UV divergences
The following graphs at order

are logarithmically UV divergent.  	


!
 This reflects the interaction of nearly on-shell outgoing graviton with the          
potential of the two-body system.   Eg.

1/r2

�
ddq

(2⇥)d

1
|q|

1
k2 � (k + q)2 + i�

� 1
|q|

�
�

d3q
(2⇥)3

1
|q|3 �

1
�UV

⌘23 ⇠ v6



 The full result at second order in the expansion is then

A⌘2

A⌘0
= (GNm|k|)2


� (k2 + i✏)

⇡µ2
e�E

��2✏
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�
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(doable via MB)



RG flows
UV divergences correspond to singularities in the multipole expansion, 
first at             .    In the EFT, these divergences are absorbed into the 
Wilson coefficients, i.e, renormalization of the multipole moments

⌘23 ⇠ v6

µ
d

dµ
IRij (!, µ) = �214

105
(GNm!)2IRij (!, µ),

Iij(!, µ) =


µ

µ0

�� 214
105 (GNm!)2

Iij(!, µ0).

This can be used to predict the pattern of logs                         in 
quadrupole radiation:

⇠ ⌘2n logn ⌘



ĖLL

ĖLO

= v�
1712
105 v6

= 1� 1712

105
v6 ln v+

1465472

11025
v12 ln2 v� 2508888064

3472875
v18 ln3 v

For circular orbits, our prediction is 

+ · · ·

This was confirmed recently by BH perturbation theory (R. Fujita, arXiv:1211.5535)

+ · · ·� 722.42394673001478 ln(v)3v18 + · · ·

⇡ 2508888064

3472875



This result can be extended to the            moments, using the methods 
developed in Ross, arXiv:1202.4750.  The general pattern of logs is

` > 2

Sommerfeld	


factor

Fixes the series of logs

Other recent results in the radiation sector:  

Radiation reaction at 3.5PN (1993-1995) (Galley+Leibovich, 2012).  4 
PN in progress (2011 Wang et al).	


!
3PN Flux and 2.5PN waveform for spin-induced moments 
(Porto, Ross, Rothstein, 2010,2012).	


!
Hereditary terms in radiation reaction at 4PN  (Foffa+Sturani, 
2011) (Blanchet et al 2010)  

Maybe useful for the construction of phenomenological templates…



Dynamics and RG evolution of the mass 
mode (WG, Ross, Rothstein, PRD 2013)

!
As we’ve seen,  either a single compact object or a composite binary 
system is described by an EFT of the form

!
So far we have neglected the (slow) time dependence of the mass 
mode.    The fact that mass is dynamical is a requirement of the 
renormalizability of the EFT

S = �
Z

d⌧(�)M(�) +
1

2

Z
d⌧(�)Iij(�)Eij(�) + · · ·



!
To track the time evolution of the mass mode we must employ in/in 
boundary conditions.   Thus we compute the following matrix element

hin|Tµ⌫(x)|ini = � 2p
g

+

��

�ḡ

µ⌫
+ (x)

�����
h̄+=h̄�=0

.

!
where the in/in effective action as a function of sources is

e

i�[h̄+,h̄�,I,M ] =

Z
Dh

+(x)Dh

�(x)eiS[g+,M,I]�iS[g�,M,I]
,

!
In terms of diagrams:

@µhTµ⌫i = 0

hTµ⌫i =
+ + + · · ·

!
where we drop terms that vanish in dimensional regularization.



!
Expanding in the           limit (multipole expansion) one finds (in rest frame)k ! 0

= �3(x)M(t)

h00

h00

= �3(x)


GN

5

Z t

�1
dt0I(5)ij (t0)I(1)ij (t0)

�
h00

+

!
(net result for           is causal, depending only on 	


the past history of the sources)

hT 00i

!
The time evolution of the mass mode is fixed by the Ward identity                   .  
To leading order in the multipole exp. this is just 

@µhTµ⌫i = 0

d

dt

hT 00(x)i = 0 Ṁ(t) = �GN

5
I(5)ij (t)I(1)ij (t)

!
Upon time averaging we reproduce the std. LO result hṀi = �GN

5
hI(3)ij I(3)ij i

!
More generally,                          determines how all the moments 
evolve in time due to radiative corrections (radiation reaction)

@µhTµ⌫i = 0



!
Note that the computing the diagram 

!
involves the Feynman integral

I =

Z
dd�1q

(2⇡)d�1

1

q2 + !2
=

�(3/2� d/2)

(4⇡)(d�1)/2
!d�3

!
Although formally finite in dim. reg. as             , the integral is linearly UV 
divergent by power counting.   A time dependent mass counterterm would 
be needed to renormalize this divergence.

d ! 4

!
This is why, in the EFT, the mass must become a dynamical variable, 
whose evolution is fixed by the condition the Ward id. @µhTµ⌫i = 0



!
At the next order in the expansion, the UV divergences are logarithmic:

!
Leading to RG evolution of the mass mode (even under time reversal)

µ
d

dµ
M(t, µ) = �2G2M̄

5

⇣
2I(5)ij I(1)ij � 2I(4)ij I(2)ij + I(3)ij I(3)ij

⌘
(t)

!
(on the RHS, to the order we work in, we treat the mass as a constant.   We 
may as well take it to be the time averaged mass                                       )                         

M̄ = lim
T!1

1

2T

Z T

�T
dtM(t)



!
Heuristic interpretation of RG running:

!
              is the conservative mass (not including on-shell 	


radiation out to infinity).  Varying the observation 	


radius from                  to                   changes how	


much backscattered radiation is kept in the definition	


of 

µ = 1/r µ = 1/R

M(t, µ)

M(t, µ)

!
To NLO                     Bondi mass.                                         ADM massM(t, µ) = M =

Z
d3xT 00 =



M̄(µ)

M̄0
= 1� 1

2

hI(3)ij I(3)ij i0
M̄2

0

r2s ln v +
107

420

hI(4)ij I(4)ij i0
M̄2

0

r4s ln
2 v � 11449

132300

hI(5)ij I(5)ij i0
M̄2

0

r6s ln
3 v + · · · ,

!
Can solve the coupled RGEs for             ,             perturbatively:M(µ, t) Iij(µ, t)

!
where we have run from                                       to minimize “large logs”µ0 ⇡ r

s

= 2G
N

M
o

! µ = !

!
Applications to high order log corrections to 

!
Graviton emission:

!
“Lamb shift”:    Radiative correction to bound state energy:

!
(see also Galley, Leibovich, Ross; in progress).

E(⌦) = � µ2

M0

448

15
v10 ln v + . . . ,

!
consistent with Blanchet et al 2010.

M ! M(µ = !)

����
A(!)

A0(!)

����
2

= 1 + ⇡rs! � ⇡

2

hI(3)ij I(3)ij i0
M̄2

0

r3s! ln v +
107⇡

420

hI(4)ij I(4)ij i0
M̄2

0

r5s! ln2 v + · · ·



Summary and outlook
!
EFT methods provide a complete understanding of the dynamics of 
non-relativistic binaries.   It has been used to obtain new results 
(particularly for spin) not yet achieved by traditional PN methods.

!
Some possible future directions:

!
On-shell amplitude methods?    (see Neill+Rothstein, 2013).

!
RG from RW for         ?` > 2

!
Other kinematic regimes?


