New Insights Into Axion-Lepton Interactions

Bay Area Particle Theory Seminar [2209.00665] Altmannshofer, JD, and Gori

Jeff Dror

Leptophilic Effective Theory

Leptophilic Effective Theory

Shift symmetry:

Leptophilic Effective Theory

Shift symmetry:

$$j^{\mu}_{\mathrm{PQ}} = \frac{1}{2m_{\ell}} \left(\bar{g}_{\ell\ell} \bar{\ell} \gamma^{\mu} \ell + g_{\ell\ell} \bar{\ell} \gamma^{\mu} \gamma_5 \ell + g_{\nu_{\ell}} \bar{\nu}_{\ell} \gamma^{\mu} P_L \nu_{\ell} \right)$$

$$j^{\mu}_{\mathrm{PQ}} = \frac{1}{2m_{\ell}} \Big(\bar{g}_{\ell\ell} \bar{\ell} \gamma^{\mu} \ell + g_{\ell\ell} \bar{\ell} \gamma^{\mu} \gamma_5 \ell + g_{\nu_{\ell}} \bar{\nu}_{\ell} \gamma^{\mu} P_L \nu_{\ell} \Big)$$

Should we demand electroweak invariance $(\bar{g}_{\ell\ell} - g_{\ell\ell} = g_{\nu_\ell})$?

$$j^{\mu}_{\mathrm{PQ}} = \frac{1}{2m_{\ell}} \Big(\bar{g}_{\ell\ell} \bar{\ell} \gamma^{\mu} \ell + g_{\ell\ell} \bar{\ell} \gamma^{\mu} \gamma_5 \ell + g_{\nu_{\ell}} \bar{\nu}_{\ell} \gamma^{\mu} P_L \nu_{\ell} \Big)$$

$$j^{\mu}_{\mathrm{PQ}} = \frac{1}{2m_{\ell}} \Big(\bar{g}_{\ell\ell} \bar{\ell} \gamma^{\mu} \ell + g_{\ell\ell} \bar{\ell} \gamma^{\mu} \gamma_5 \ell + g_{\nu_{\ell}} \bar{\nu}_{\ell} \gamma^{\mu} P_L \nu_{\ell} \Big)$$

Requirement has dramatic consequences

$$\mathcal{L} = -a\partial_{\mu}j^{\mu}_{\mathrm{PQ}}$$

$$\mathcal{L} = -a\partial_{\mu}j^{\mu}_{\mathrm{PQ}}$$

$$\partial_{\mu} j^{\mu}_{\mathrm{PQ}} =$$

$$\mathcal{L} = -a\partial_{\mu}j^{\mu}_{\mathrm{PQ}}$$

 $\partial_{\mu} j^{\mu}_{\rm PQ} = g_{\ell\ell}(\bar{\ell} i \gamma_5 \ell)$

$$\mathcal{L} = -a\partial_{\mu}j_{\rm PQ}^{\mu}$$

$$\partial_{\mu}j_{\rm PQ}^{\mu} = g_{\ell\ell}(\bar{\ell}i\gamma_{5}\ell) \begin{bmatrix} 10^{-3} \\ 10^{-4} \\ 10^{-5} \\ \frac{10^{-4}}{6} \\ 10^{-5} \\ \frac{10^{-6}}{6} \\ 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ \frac{10^{-7}}{10^{-8}} \\ \frac{10^{-7}}{10^{-7}} \\ \frac$$

5/13

$$\mathcal{L} = -a\partial_{\mu}j_{PQ}^{\mu}$$

$$\partial_{\mu}j_{PQ}^{\mu} = g_{\ell\ell}(\bar{\ell}i\gamma_{5}\ell) \int_{0}^{10^{-4}} \int_{0}^{10^{$$

5/13

$$\mathcal{L} = -a\partial_{\mu}j^{\mu}_{\mathrm{PQ}}$$

 $\partial_{\mu} j^{\mu}_{\mathrm{PQ}} = g_{\ell\ell}(\bar{\ell} i \gamma_5 \ell)$

$$-\frac{1}{64\pi^2}\frac{1}{m_{\ell}}(g_{\ell\ell}-\bar{g}_{\ell\ell}-g_{\nu_{\ell}})g^2W^+_{\mu\nu}\tilde{W}^{-\mu\nu}+\dots$$

$$\mathcal{L} = -a\partial_{\mu}j^{\mu}_{\mathrm{PQ}}$$

⁵/₁₃

$$\mathcal{L} = -a\partial_{\mu}j^{\mu}_{\mathrm{PQ}}$$

$$\mathcal{L} = -a\partial_{\mu}j^{\mu}_{\mathrm{PQ}}$$

"Standard" $\partial_{\mu} j^{\mu}_{\rm PO} = g_{\ell\ell}(\bar{\ell} i \gamma_5 \ell)$ form Anomaly terms $-\frac{1}{64\pi^2}\frac{1}{m_{\ell}}(g_{\ell\ell}-\bar{g}_{\ell\ell}-g_{\nu_{\ell}})g^2W^+_{\mu\nu}\tilde{W}^{-\mu\nu}+\dots$ Weak vertex $+rac{ig}{2\sqrt{2}}rac{1}{m_{\ell}}(g_{\ell\ell}-ar{g}_{\ell\ell}+g_{
u_{\ell}})(ar{\ell}\gamma^{\mu}P_L
u_{\ell})W^{-}_{\mu} + ext{h.c.}$ W'

$${\cal L}=-a\partial_{\mu}j^{\mu}_{
m PQ}$$

$$\partial_{\mu}j_{PQ}^{\mu} = g_{\ell\ell}(\bar{\ell}i\gamma_{5}\ell)$$

$$-\frac{1}{64\pi^{2}}\frac{1}{m_{\ell}}(g_{\ell\ell} - \bar{g}_{\ell\ell} - g_{\nu_{\ell}})g^{2}W_{\mu\nu}^{+}\tilde{W}^{-\mu\nu} + \dots$$

$$+\frac{ig}{2\sqrt{2}}\frac{1}{m_{\ell}}(g_{\ell\ell} - \bar{g}_{\ell\ell} + g_{\nu_{\ell}})(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell})W_{\mu}^{-} + h.c.$$

$$Weak$$

$$W \longrightarrow W^{-}$$

$$W \longrightarrow W^{-$$

a

New detection opportunities

Relevant for all ALPs

*ALP- π^0 mixing and quark coupling E.g., [Krauss, Wise - '86], [Bardeen et al - '87], [Altmannshofer et al - 19]

*ALP- π^0 mixing and quark coupling E.g., [Krauss, Wise - '86], [Bardeen et al - '87], [Altmannshofer et al - 19]

LIMITS FOR SHORT-LIVED NEUTRAL PARTICLES EMITTED IN μ^+ OR π^+ DECAY

SINDRUM Collaboration

Past

LIMITS FOR SHORT-LIVED NEUTRAL PARTICLES EMITTED IN μ^+ OR π^+ DECAY

SINDRUM Collaboration

Past

LIMITS FOR SHORT-LIVED NEUTRAL PARTICLES EMITTED IN μ^+ OR π^+ DECAY

SINDRUM Collaboration

Past

LIMITS FOR SHORT-LIVED NEUTRAL PARTICLES EMITTED IN μ^+ OR π^+ DECAY

SINDRUM Collaboration

└ ~ Reached $\operatorname{Br}_{\pi^+ \to e^+ \nu a} \lesssim 10^{-10}$

Future

PSI Ring Cyclotron Proposal R-22-01.1 PIONEER: Studies of Rare Pion Decays

W Altmannshofer ¹ H. Binnev ² E. Blucher ³ D. Bryman ^{4,5} L. Caminada ⁶

Past

LIMITS FOR SHORT-LIVED NEUTRAL PARTICLES EMITTED IN μ^+ OR π^+ DECAY

SINDRUM Collaboration

Future

PSI Ring Cyclotron Proposal R-22-01.1 PIONEER: Studies of Rare Pion Decays

W. Altmannshofer ¹ H. Binney ² E. Blucher ³ D. Bryman ^{4,5} I. Caminada ⁶

LIMITS FOR SHORT-LIVED NEUTRAL PARTICLES EMITTED IN μ^+ OR π^+ DECAY

SINDRUM Collaboration

Future

PSI Ring Cyclotron Proposal R-22-01.1 PIONEER: Studies of Rare Pion Decays

W Altmannshofer ¹ H. Binney ² E. Blucher ³ D. Bryman ^{4,5} I. Caminada ⁶

8/13

LIMITS FOR SHORT-LIVED NEUTRAL PARTICLES EMITTED IN μ^+ OR π^+ DECAY

SINDRUM Collaboration

Future

PSI Ring Cyclotron Proposal R-22-01.1 PIONEER: Studies of Rare Pion Decays

W. Altmannshofer ¹ H. Binney ² E. Blucher ³ D. Bryman ^{4,5} L. Caminada ⁶

ightarrow Reached $\operatorname{Br}_{\pi^+ \to e^+ \nu a} \lesssim 10^{-10}$

Future

PSI Ring Cyclotron Proposal R-22-01.1 PIONEER: Studies of Rare Pion Decays

W. Altmannshofer ¹ H. Binney ² E. Blucher ³ D. Bryman ^{4,5} L. Caminada ⁶

8/13

ightarrow Reached $\operatorname{Br}_{\pi^+ \to e^+ \nu a} \lesssim 10^{-10}$

Future

PSI Ring Cyclotron Proposal R-22-01.1 PIONEER: Studies of Rare Pion Decays

W. Altmannshofer ¹ H. Binney ² E. Blucher ³ D. Bryman ^{4,5} I. Caminada ⁶

8/13

Future

PSI Ring Cyclotron Proposal R-22-01.1 PIONEER: Studies of Rare Pion Decays

W. Altmannshofer ¹ H. Binney ² E. Blucher ³ D. Bryman ^{4,5} I. Caminada ⁶

⁸/₁₃

Improve with Kaon factories

Improve with Kaon factories

Bound on rare W-boson decays?

W ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/c)
$\ell^+ \nu$	[b] (10.86 ± 0.09)	%	_
$e^+ \nu$	(10.71 ± 0.16)	%	40189
$\mu^+ \nu$	(10.63± 0.15)	%	40189
$\tau^+ \nu$	(11.38 ± 0.21)	%	40170
hadrons	(67.41± 0.27)	%	-
$\pi^+\gamma$	< 7	× 10 ⁻⁶ 95%	40189
$D_s^+ \gamma$	< 1.3	× 10 ⁻³ 95%	40165
сX	(33.3 ± 2.6)	%	-
cs	$(31 \ +13 \ -11 \)$	%	-
invisible	[c] (1.4 ± 2.9)	%	-
$\pi^{+}\pi^{+}\pi^{-}$	< 1.01	× 10 ⁻⁶ 95%	40189

Bound on rare W-boson decays?

W ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confiden	ce level	р (MeV/c)
$\ell^+ \nu$	[b] (10.86± 0.09)	%		_
$e^+ \nu$	(10.71 ± 0.16)	%		40189
$\mu^+ \nu$	(10.63 ± 0.15)	%		40189
$\tau^+ \nu$	(11.38 ± 0.21)	%		40170
hadrons	(67.41± 0.27)	%		-
$\pi^+\gamma$	< 7	\times 10 ⁻⁶	95%	40189
$D_{\epsilon}^{+}\gamma$	< 1.3	$\times 10^{-3}$	95%	40165
сX	(33.3 ± 2.6)	%		-
<i>c</i> 5	$(31 \ +13 \ -11 \)$	%		-
invisible	[c] (1.4 ± 2.9)%		-	
$\pi^+\pi^+\pi^-$	< 1.01	× 10 ⁻⁶	95%	40189

└ Contribute to total width,

```
\Gamma_W = 2.085 \pm 0.04 \text{ GeV}
```

 $\mathrm{Br}_{W^+ \to e^+ \nu a} \lesssim 0.04$

└-> Dedicated search:

 $\operatorname{Br}_{W^+ \to e^+ \nu a} \lesssim \mathcal{O}(10^{-5})$

¹¹/₁₃

[Alves, Weiner - '17] , [Alves - '21] revisited possibility of MeV QCD axion

[Alves, Weiner - '17] , [Alves - '21] revisited possibility of MeV QCD axion

Revisited theory of leptophilic ALPs

weak-preserving

Need to distinguish

weak-violating

Strong bounds in either caseCharged mesonW bosonProton beamdecaysdecaysdumps

Revisited theory of leptophilic ALPs

weak-preserving

Need to distinguish

weak-violating

Strong bounds in either caseCharged mesonW bosonProton beamdecaysdecaysdumps

Final musings Weak-violating ALPs drive new phenomenology Every model has some weak-violation. Implications?

¹³/₁₃