Theory status and prospects for the muon g-2 (/2 = a_{μ})

Tom Blum (UConn/RBRC)

Bay Area Particle Theory Seminar

March 5, 2021

BNL E821 Measurement *a*_µ = 116592089(63) 10⁻¹¹ (0.54 ppm)

THE MUON g-2 EXPERIMENT AT FERMILAB

PETER WINTER High Energy Physics Division Argonne National Laboratory

THE MUON g-2 EXPERIMENT AT FERMILAB

PETER WINTER High Energy Physics Division Argonne National Laboratory

MUONS IN A STORAGE RING

Cyclotron frequency:

$$\omega_c = \frac{e}{m\gamma} B$$

$$\omega_{s} = \frac{e}{m\gamma} B(1 + \gamma a_{\mu})$$

Larmor + Thomas precession

$$\overrightarrow{\omega}_{a} = \overrightarrow{\omega}_{S} - \overrightarrow{\omega}_{c} = \frac{e}{m} \left(a_{\mu} \overrightarrow{B} \right)$$

4

In presence of additional E-field:

$$\overrightarrow{\omega}_{a} = \frac{e}{m} \left(a_{\mu} \overrightarrow{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \right)$$

In presence of additional E-field:

Magic momentum (γ = 29.3, p=3.094 GeV/c)

E field for vertical focusing CERN-III, BNL E821, Fermilab E989

In presence of additional E-field:

In presence of additional E-field:

$$\omega_a = e/m a_\mu B$$

• Measuring the anomalous moment \mathbf{a}_{μ} requires both

- 1. the spin precession frequency ω_a
- 2. the magnetic field **B** (through NMR spectroscopy of proton)

RUN-1 ANALYSIS STATUS: ω_a

• Simple 5-parameter fit captures the main features of the "wiggle plot":

$$N(t) = N_0 e^{-t/\tau} \left[1 - A \cos\left(\omega_a t + \phi\right) \right]$$

Run plan and expected statistics

7

- Low emittance muon beam (1/1000)
- No strong focusing (1/1000) & good injection eff. (x10)
- Compact storage ring (1/20)
- Tracking detector with large acceptance

Theory v. experiment (muon g-2 theory initiative baseline)

magnetic moment of free muon is spin $\times \frac{e}{2m}$ g, g=2

Standard Model Theory: QED+EW+QCD

(2006.04822 [hep-ph])

(2006.0²Sgd_mnl_kntrl_fmdshblnldmsnesgdltnmhmsgdRs_mc_qc Lncdk

L - Aqt mn⁸+HB_oqmh^{0/}+B-L - B_qknmhB_k_I d⁰⁰+L - Bc⁸⁺⁰¹⁺⁰²+F - Bnk_mf dkn^{03+X}+ E-Bt qbh_qdkkn⁰⁴⁻⁹⁵+G-Byxś⁰⁶+HC_mtkj hm⁰¹+L - C_uhdq^{07+K}+B-S-G- C_uhdr⁰⁸+ L - Cdlk L nqsd 1/ + RH Dhcdk _m^{10+1+*}+@W Dk, Jg_cq_^{12+3+*}+@ Fèq_qchm¹⁴+ C-Fltrsh¹⁵⁺¹⁶+L-Fnksdol _m¹⁷+RedudmFnsskhda¹⁸+U-Fúkodor^{2/}+E-G_f dkrsdhm⁰³+ L - G_x_j _v _²⁰⁺+F- Gdqcnëy_²¹+C-V - Gdqsynf ²²+@ Gndbj dq²³+ L - Gneddhogsdq^{03+24+*}+A-, K-Gnhc²⁵+Q-I-Gt crohsg⁰¹⁺⁰²+E-Him_snu¹⁰+ S- Hyt at bgh²⁶⁺⁷+E- ldf ddydgmdq²⁷+K- lhm⁶⁺⁷+@ J drg_u_dyh²⁸+S- J hmrghs_^{3/+80}+ A-Jt ahr ²⁵+@Jt olbg ¹⁰+@Jt olog ^{31,82}+K-K_t a ⁰³+B-Kdgmdq ^{15,26,4}+K-Kdkknt bg ¹⁴+ HKnf_rgdmj n¹⁰+A-L_k_drbt ⁴+J-L_ksl_m³³⁺²⁴+L-J-L_dmj nuhý³⁵⁺²⁶+ OL_rit_m³⁷⁻⁸⁸+@R-L dxdq²⁶+G-A-L dxdq⁰¹⁻⁹²+S-L had ^{0+*}+J-L ht q_⁰¹⁻⁹²⁻²+ R-D-L úkkdq^{4/}+L-Mm¹⁺⁴⁰+C-MnI t q_⁴¹⁺⁴²+@ Mxeedkdq^{01+*}+U-O_rb_kt sr_⁰¹+ L - O_rrdq_43+D-Odady cdkQm 44+R-Odahr 37-88+@ Onasdkkh2/+L - Oanbt q_45+ B-E-Qdcl dq⁰¹+A-K-Qnadqsr^{46+*}+O-Pambgdy, Qt dqs_r³⁸+R-Pdqdcmx_j nu¹⁰+ A-Rgv_qsy¹⁰+R-Rh t k_¹⁶+C-Rsóbj hmf dq⁴⁷+G-Rsóbj hmf dq, J h ⁴⁷+O Rsneedq⁴⁸+ S-Sdt amdq^{5/ +}+Q-U_mcd V _sdq¹³+L - U_mcdqg_df gdm⁰¹⁻⁰²+F-Udm_mynmh⁵⁰+ F-unmGhoodk⁰¹+G-V heshf ⁰¹⁺⁰²+Y-Yg_mf ⁰⁷+L -M-@bg_rnu¹⁰+@A_rghq⁵¹+ M-B_qcnrn³⁶+A-Bg_j q_anqsx⁵²+D-, G-Bg_n⁰¹+I-Bg_qkdr¹⁴+@Bqhudkkm⁵³⁻⁶⁴+ N-Cdhrdj _ 01+@ Cdrtf 01+02+B-CdS_q55+B-@ Cnl hrft dy 56+@D-Cnqnj gnu 57+ U-O-Cqt yghntm¹⁰+F-Dtbgl _mm⁵⁸⁺⁶⁶+L - E_dk^{6/}+B-R-Brbgdq⁶⁰+D-Fàl hy⁶¹+ Y-Fdkydq¹²+I-Q-Fqddm⁸+R-Ft dkk_shJgdkhe_⁶²+C-G_ssnm⁰⁸+ M-Gdd _mrrnm, Sqt dcrrnm⁰³+R-Gnky²⁵+A-Góqy⁶³+L-Jmdbgs¹⁴+I-Jnonmdm⁰+ @R-Jonmedic ¹³+I-K_hgn ⁶⁴+R-Kdt onkc ³¹+OA-L _bj dmyhd ¹³+V -I-L _doh_m ²⁶+ B-L bMdHd 65+C-L ngkdq01+2+I-L nmm_qc 03+D-S-MdHk66+@U-Mdrsdqdmj n 57+ J-Nssm_c⁰¹+U-O_t j⁰¹+@D-Q_cyg_anu⁶⁷+D-cd Q_e_dk¹⁴+J-Q_x_⁶⁸+@ Qhrbg⁰¹+ @ Qncqeft dy, Rambgdy⁵+O Qnhf^{7/}+S-R_mInre⁰¹⁻⁹²+DO Rnkncnu¹⁰+Q-Rtf_q⁷⁰+ J-Xt-Sncxrgdu¹⁰+@U_hmrgsdhm⁷¹+@U_pt dop @uhker, B_rbn⁵⁵+D-V dhk⁶⁰+ I-V Hkgdkl ⁰¹+Q-V Hkkh_I r ⁶⁰+@R-Ygduk_j nu ⁶⁷

(2006.04822 [hep-ph])

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9-17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

(2006.04822 [hep-ph])

			(
Contribution	Section	Equation	Value $\times 10^{11}$	0.54 PPIVI
Experiment (E821)		Eq. (8.13)	16 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9-17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
HVP $(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	0.37 PPM

(2006.04822 [hep-ph])

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9-17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

(2006.04822 [hep-ph])

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9–17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

(2006.04822 [hep-ph])

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9-17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

(2006.04822 [hep-ph])

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9-17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

(2006.04822 [hep-ph])

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9-17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

(2006.04822 [hep-ph])

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9–17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

(2006.04822 [hep-ph])

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9-17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

(2006.04822 [hep-ph])

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2-7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9-17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18-30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18-32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

Hadronic vacuum polarization (HVP) I: data driven (e+e-)

a_{μ} -HVP from data

 $a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$

More precise than lattice determination. Total error larger than DHMZ and KNT separately.

Data from BABAR, BESIII, CMD-2, KLOE, SND

"Merged" value from DHMZ, KNT, and CHHKS (simple average in each channel for central value, conservative combination of errors). Errors statistical and systematic Data sets disagree outside of quoted errors, leads to differences in analysis too.

Some differences cancel in integrated quantities

Fig. 13. The $\pi^+\pi^-$ cross section from the KLOE combination compared to the BABAR, CMD-2, SND, and BESIII data points in the 0.6–0.9 GeV range [82]. The KLOE combination is represented by the yellow band. The uncertainties shown are the diagonal statistical and systematic uncertainties summed in quadrature.

Source: Reprinted from Ref. [82].

Comparison of results for $a_{\mu}^{HVP, LO}[\pi \pi]$, evaluated between 0.6 GeV and 0.9 GeV for the various experiments.

Table 5

Selected exclusive-mode contributions to $a_{\mu}^{\text{HVP, 10}}$ from DHMZ19 and KNT19, for the energy range ≤ 1.8 GeV, in units of 10⁻¹⁰. Where three (or more) uncertainties are given for DHMZ19, the first is statistical, the second channel-specific systematic, and the third common systematic, which is correlated with at least one other channel. For the $\pi^+\pi^-$ channel, the uncertainty accounting for the tension between BABAR and KLOE (amounting to 2.76 × 10⁻¹⁰) is included in the channel-specific systematic.

	DHMZ19	KNT19	Difference
$\pi^+\pi$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^{+}\pi^{-}\pi^{0}$	46.21(0.40)(1.10)(0.86)	46.63(94)	0.42
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.68(0.03)(0.27)(0.14)	13.99(19)	0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.03(0.06)(0.48)(0.26)	18.15(74)	0.12
K ⁺ K	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
K _S K _L	12.82(0.06)(0.18)(0.15)	13.04(19)	0.22
π ⁰ γ	4.41(0.06)(0.04)(0.07)	4.58(10)	0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without cc)	33.45(71)	34.45(56)	1.00
J/ψ , $\psi(2S)$	7.76(12)	7.84(19)	0.08
[3.7, ∞) GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{HVP, LO}$	694.0(1.0)(3.5)(1.6)(0.1) _{\phi} (0.7) _{DV+QCD}	692.8(2.4)	1.2

a_{μ} -HVP from data

$$a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$$

Prospects for improvement:

- Better/more analysis of existing data (BABAR, KLOE)
- More data from CMD-3, Belle II, BESIII, BESCII, SND
- Include τ -decay data when isospin breaking properly unde (lattice may help)

Hadronic vacuum polarization II: Lattice QCD

Time Momentum Representation (TMR) [Bernecker and Meyer, 2011]

 $a_{\mu}^{\text{HVP}} = \sum_{t} w(t)C(t), \quad C(t) = \frac{1}{3} \sum_{i,\vec{x}} \langle j_i(\vec{x},t) j_i(0) \rangle$ it ce

Calculate *C*(*t*) on 4d Euclidean space-time lattice

Hadronic vacuum polarization II: Lattice QCD

(2.6%)
HVP (Lattice):
$$a_{\mu} = 7116 (184) \times 10^{-11}$$

(2.6%)
HVP (Lattice):
$$a_{\mu} = 7116 (184) \times 10^{-11}$$

(0.58%)
HVP (pheno):
$$a_{\mu} = 6931 (40) \times 10^{-11}$$

(0.75%) HVP (BMW-20):
$$a_{\mu} = 7087 (53) \times 10^{-10}$$

(2.6%) HVP (Lattice): $a_{\mu} = 7116 (184) \times 10^{-11}$

(0.58%) HVP (pheno): $a_{\mu} = 6931 (40) \times 10^{-11}$

(0.75%) HVP (BMW-20):
$$a_{\mu} = 7087 (53) \times 10^{-10}$$

```
(2.6%)
HVP (Lattice): a_{\mu} = 7116 (184) \times 10^{-11}
```

(0.58%) HVP (pheno): $a_{\mu} = 6931 (40) \times 10^{-11}$

Lattice – pheno $\approx 18.5 (18.8)$

(0.75%) HVP (BMW-20):
$$a_{\mu} = 7087 (53) \times 10^{-10}$$

(2.6%) HVP (Lattice): $a_{\mu} = 7116 (184) \times 10^{-11}$

(0.58%) HVP (pheno): $a_{\mu} = 6931 (40) \times 10^{-11}$

> Lattice – pheno $\approx 18.5 (18.8)$ BMW-20 – pheno $\approx 15.6 (6.6)$

The connected light quark contribution

State-of-the-art is to use physical quark masses (Significant chiral extrap in ETM and Mainz/CLS)

Long distance contributions and the statistical error

Low Mode Average: RBC/UKQCD-18, Aubin, *et al.*-19, BMW-20 (C(t) averaged over all EM current source-sink pairs)

Correlator reconstruction: Mainz, RBC/UKQCD

Dominated by two pion states at large time

Bounding method

Original method: BMW-17,20, RBC/UKQCD-18

Fit method FHM-19, ETM-19

replace data beyond t* with multi-exponential, multi-operator fit

Mainz-19, RBC/UKQCD: Improved method using long distance correlator reconstruction

(much) Shorter distances possible

BMW-20 continuum extrapolation ($M_{\Omega} + w_0$)

 $a_{\mu} + a^2 (+a^4)$

$$L_{\rm ref} = 6.272 \text{ fm} = \frac{2}{3} T_{\rm ref}$$

(FV correction 18.7(2.5), IB 5.7(...))

 $w_0 = 0.17236(29)(63) \text{ fm}$ (0.4%)

RBC/UKQCD-18 continuum limit (M_{Ω})

Third lattice spacing for strange data (a⁻¹ = 2.77 GeV with m_π = 234 MeV with sea light-quark mass corrected from global fit):

- *a*⁻¹ = 1.730 GeV results differ by a few percent from continuum limit
- 2.7 GeV lattice underway to compliment 1.730, and 2.359 GeV

Light quark: 647.9 (14.2)(2.8)(1.5)(3.7)(...) x 10⁻¹⁰ (statistical, *a*⁴, scale setting, FV, ...) total: 705.9 (14.6)(2.9)(1.8)(3.7)(...) x 10⁻¹⁰ (statistical, *a*⁴, scale setting, FV, ...)

RBC/UKQCD-18 continuum limit (M_{O})

Third lattice spacing for strange data (a⁻¹ = 2.77 GeV with $m_{\pi} = 234$ MeV with sea light-quark mass corrected from global fit):

- More than doubled statistics on current ensembles
- Improved bounding method •
- Estimate sub-percent total error with these improvements ullet
- Need to add 3rd lattice spacing to reach 0.7 % error •

- $a^{-1} = 1.730$ GeV results differ by a few percent from continuum limit
- 2.7 GeV lattice underway to compliment 1.730, and 2.359 GeV

```
a^2/fm^2
(strange quark contribution)
```

```
Light quark: 647.9 (14.2)(2.8)(1.5)(3.7)(...) x 10<sup>-10</sup> (statistical, a<sup>4</sup>, scale setting, FV, ...)
         total: 705.9 (14.6)(2.9)(1.8)(3.7)(...) x 10<sup>-10</sup> (statistical, a<sup>4</sup>, scale setting, FV, ...)
```

Aubin, et al.-20 continuum limit (f_{π} + w_{0} , from FHM 19)

Statistical, CL fit, scale setting (includes NLO taste breaking (and FV) corrections)

Aubin, et al.-20 continuum limit (f_{π} + w_{0} , from FHM 19)

- More than doubled statistics on finest ensemble
- Improved low-mode average on finest ensemble
- Added new coarsest ensemble
- Adding statistics for two finest ensembles
- Aiming for 1% total

a- (rm-)

651 (20)(5) x 10⁻¹⁰

Statistical, CL fit, scale setting (includes NLO taste breaking (and FV) corrections)

Disconnected contributions

- More groups needed
- Includes strange contribution [Mainz]
- Statistical and systematic errors important

Isospin symmetry breaking corrections

Collaboration	QED			Str	ong IB
	V+S (+S _T)		F (+D3)	М	0
BMW-20	-1.27(40)(33)		-0.55(15)(11)	6.59(63)(53)	-4.63(54)(69)
ETM-19	1.1(1.0)			6.0(2.3)	
RBC/UKQCD-18	5.9(5.7)()		-6.9(2.1)(1.4)()	10.6(4.3)()	
FHM-19				1.5(7) % a _µ "	
LM-20				9.0(0.8)(1.2)	

- statistical errors large (except BMW-20, LM-20)
- Spread is relatively large
- FV effects can be very large (*e.g.*, see LM-20)
- large cancelations

Towards precise comparisons: the window method [RBC/UKQCD-18]

$$\begin{aligned} a^{\text{HVP, LO}}_{\mu} &= a^{\text{SD}}_{\mu} + a^{\text{W}}_{\mu} + a^{\text{LD}}_{\mu}, \\ a^{\text{SD}}_{\mu} &= \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 \, C(x_0) \widetilde{f}(x_0) [1 - \Theta(x_0, t_0, \Delta)], \\ a^{\text{W}}_{\mu} &= \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 \, C(x_0) \widetilde{f}(x_0) [\Theta(x_0, t_0, \Delta) - \Theta(x_0, t_1, \Delta)], \ \Theta(t, t', \Delta) = [1 + \tanh\left(\frac{t - t'}{\Delta}\right)]/2 \\ a^{\text{LD}}_{\mu} &= \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 \, C(x_0) \widetilde{f}(x_0) \Theta(x_0, t_1, \Delta), \end{aligned}$$

(ud connected, 0.4 – 1.0 fm window)

Towards precise comparisons: the window method [RBC/UKQCD-18]

 $a_{\mu}^{W}(ud) \ge 10^{10}$

(ud connected, 0.4 - 1.0 fm window)

Towards precise comparisons: the window method [RBC/UKQCD-18]

Strange and charm contributions

Strange and charm contributions

Seem to be in good shape

To reach desired precision (2-5 per-mil?)

- Strange, charm contributions in good shape (will not resolve issues)
- FV corrections (L > 6 fm) reliable (NNLO χ PT, LLGS, HP) Important to have a big box (BMW, PACS use L = 10 fm)
- Statistical precision top priority for DW, TM, Wilson (in the works) Improved bounding method using low-lying states for long distance tail
- Must work directly with physical masses (most groups already)
- More, more precise disconnected and IB calculations needed Some spread in results, not all diagrams computed
- Continuum limit and scale setting (per-mil) crucial. At least 3 lattice spacings in a²-scaling regime Are (N)NLO and LLGS taste corrections enough? All groups need to investigate windows in Euclidean time Is f_π good enough (EM corrections)²

\boldsymbol{a}_{μ} -HLbL from data and models

T. Aoyama, N. Asmussen, M. Benayoun et al.

Physics Reports 887 2020) 1-166

Fig. 57. The pseudoscalar-pole contribution: the dashed lines stand for the pseudoscalar meson, while the blobs can be unambiguously related to the TFFs. Source: Reprinted from Ref. [19].

Ogxrifbr Odonogr 776 1/1/(02055

Enf-5. - Bnil o_ophrnm ne sgol V⁷ SEE explicit rodophrm sgolnop: Z10-286[&pdc(+B@ Z08[&aktol(+_mck_sshod PBC Z11[&kolkkinv (-Vidirgnvian sgolinhmfkx, &koles(_mcsgolichtakx,ubopst_k&ophigs(end) e_bsnop-

a_{μ} -HLbL from data and models

T. Aoyama, N. Asmussen, M. Benayoun et al.

Physics Reports 887 2020) 1-166

Good agreement between

data/dispersive and lattice approaches

Enf-5. - Bni o_ophrnm ne sgol v′SEE eopi chrodophnm sgolnopx Z10-486 [&opic (+B@ Z08 [&aktol (+_mck_sshod PBC Z11 [&xolkknv (-Volrgnv an sg sgol rhm fkx, &koles(_mcsgol cntakx,ubost_k &ophigs(enqi e_b snop-

a_{μ} -HLbL from data and models

T. Aoyama, N. Asmussen, M. Benayoun et al.

Physics Reports 887 2020) 1-166

Table 15

Comparison of two frequently used compilations for HLbL in units of 10¹¹ from 2009 and a recent update with our estimate. Legend: PdRV = Prades, de Rafael, Vainshtein ("Glasgow consensus"); N/JN = Nyffeler / Jegerlehner, Nyffeler; J = Jegerlehner.

Contribution	PdRV(09) [475]	N/JN(09) [476,596]	J(17) [27]	Our estimate
π^0 , η , η' -poles	114(13)	99(16)	95.45(12.40)	93.8(4.0)
π , κ -loops/boxes S-wave $\pi\pi$ rescattering	7(7)	7(2)	5.98(1.20)	8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars				1/2)
tensors			1.1(1)) ((s)
axial vectors u, d, s-loops / short-distance	15(10)	22(5) 21(3)	7.55(2.71) 20(4)	6(6) 15(10)
c-loop	2.3		2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

a_{μ} -HLbL from data and models

T. Aoyama, N. Asmussen, M. Benayoun et al.

Physics Reports 887 2020) 1-166

Table 15

Comparison of two frequently used compilations for HLbL in units of 10¹¹ from 2009 and a recent update with our estimate. Legend: PdRV = Prades, de Rafael, Vainshtein ("Glasgow consensus"); N/JN = Nyffeler / Jegerlehner, Nyffeler; J = Jegerlehner.

Contribution	PdRV(09) [475]	N/JN(09) [476,596]	J(17) [27]	Our estimate	
π^0 , η , η' -poles π , K-loops/boxes S-wave $\pi\pi$ rescatter	Huge improvement in pole contributions				
subtotal	All contributions con	69.4(4.1)			
scalars tensors	Errors added in quad for dispersive results				
axial vectors u, d, s-loops / short-c	Errors added linearly	6(6) 15(10)			
c-loop	2.3		2.3(2)	3(1)	
total	105(26)	116(39)	100.4(28.2)	92(19)	

Lattice HLbL

Blum, *et al.* (RBC) PRL 124 (2020) Editor's Suggestion

 $a_{\mu}^{\text{HLBL}} = 7.87 \pm 3.06 \pm 1.77 \times 10^{-10}$

- RBC: first lattice calculation with all errors controlled.
- 1 G core-hours on ALCF's Mira (BG/Q).
- 1st HLbL calculation was done on USQCD resources (Blum, et al., PRL 114 (2015))
- Crucial for Standard Model Comparison
- Included in Muon g-2 Theory Initiative average
 - 92(19)x 10⁻¹¹ (phenomenology)
 - 90(17)x 10⁻¹¹ (phenomenology+lattice)
- Unlikely to explain discrepancy with experiment

a_{μ} -HLbL outlook

- More data for pheno (...)
- RBC: QED∞ calculation, 10-20% accuracy (5 yrs)
- Other lattice groups starting (Mainz, BMW, FHM, ...)
- Combined 10% result (or better) within 5 years possible

What could BSM theory look like?

- <u>Supersymmetry</u>
- Leptoquarks
- Light scalar
- Two higgs doublets

SUSY at LHC

JHEP04 (2020) 165

Figure 1. LHC Run 2 bounds on the chargino-dominated SUSY scenario for the muon g - 2anomaly. Four parameter spaces with $\tan \beta = 40$, eq. (2.8), are considered. The black contours show $a_{\mu}^{\text{SUSY}} \times 10^{10}$, but lines corresponding to > 50 are omitted; $a_{\mu}^{\text{SUSY}} = (27.8 \pm 7.4) \times 10^{-10}$ is satisfied in the orange-filled (yellow-filled) regions at the 1σ (2σ) level. The thick black line corresponds to $m_{\overline{\mu}_{L}} = m_{\chi_{1}^{\pm}}$. The gray-filled region, where the LSP is $\overline{\nu}$, and the red-hatched region in (A), which corresponds to a compressed spectrum (see the text), are not studied. The LHC constraint from the CC/WW (NC/HW) analysis is shown by the red-filled regions with the dash-dotted (dashed) boundaries. The blue-filled regions are excluded by the SLSL analysis. The constraints from the NC/3L analysis are investigated on the model points with x = 0.05, 0.5, and 0.95 (see eq. (3.25)), where the exclusion ranges are shown by the magenta lines.

Leptoquarks

JHEP06 (2020) 089

Figure 1: The chirality-enhanced one-loop contributions to muon dipoles ($\propto m_q/m$) due to a presence of scalar S that couples to both left- and right-chiral muons, where S is either R_2 or S_1 and $q \in \{u, c, t\}$.

Efft qd 0 z Joles9 = kknv dc qdf hmm hmsgd $\kappa_{\beta}^{H} z \kappa_{\beta}^{L}$ ok] md fik $_{\beta}^{H-L}$ (hr sgd bnt okhmf nesgd JP sn kdes,g] mcdc fiqhf gs,g] mcdc (It nmr] mc sgd sno pt] qi (eqn b t qqdms] mc et st qd dwoddhi dmsr en q sgd PS fi1 (rhm kds JPr Δ_{+} v hsg C : 0 SdT-Qhf gs9 Nqdchbshmmen q sgd cdb] x nesgd RL, khi d Ghf fr an rnmg \mp $\sigma\lambda$] r] et mbshmmen τ_{21}^{R} fisgd bnt okhmf nesgd rdbnmc Ghf fr cnt akds sn $\sigma_{H}\lambda_{L}$ (t mcdq sgd] rrt I oshm sg] s τ_{12}^{R} fisgd $\sigma_{L}\lambda_{H}$ bnt okhmf (hr bgn dm hm rt bg] v] x sg] s ℓ_{β} hr dwokij hmdc-V d t rdc C_E : 3// FdT) C_{E+}: 14/ FdT)] mc C₊: 2// FdT-Enq a_{α} : /s/2 fisgd I hwhmf] I nmf sgd / M dudm mat sqj k Ghf frahr (sgd v gnkd 1 μ qdf hmmsn dwokij hm ℓ_{β} hr rgnv m) v ghd enq a_{α} : /s/0] mc a_{α} : /s/4 nmkx sgd oqdchbshmm enq sgd bdmsqj ku] kt d ne ℓ_{β}] qd cdohbsdc-Mnsd sg] s g \mp $\sigma\lambda$ dmendpdr] shi gs] ktf mi dms ne sgd Ghf fr rdbsnq-Ehft qd s] i dm eqn | Qder-Wa7)28[- arXiv:1905.03789

Electron g-2 and Light scalar

arXiv:1806.10252v2

- μ New value for α leads to 2.4- σ discrepancy for a_{ρ} with opposite sign to a
- Newer value knocks that down to 1.6, same sign

$$2 m\mu < m\varphi < \text{few GeV}$$

FIG. 2: E ective two-loop Barr-Zee diagram contribution to 2, with fermion loops integrated out. The dot (•) represents light and heavy fermion loops that contribute to κ .

Outlook

- SM is a remarkable success
- Muon g-2 best chance for new physics at the moment
- Fermilab Muon g-2 experiment E989 to announce 1st results very soon