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BNL E821 Measurement
aµ = 116592089(63) 10-11 (0.54 ppm)
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aµ = ?



 
MUONS IN A STORAGE RING 

▪Cyclotron frequency:


▪Spin precession frequency: 
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ωc  = e
m γ

 B

ωS = e
m γ

 B (1 + γ  aµ )

Larmor + Thomas precession
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MUONS IN B AND E FIELD 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▪ In presence of additional E-field:
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▪ In presence of additional E-field:
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Magic momentum (γ = 29.3, p=3.094 GeV/c) 
E field for vertical focusing 
CERN-III, BNL E821, Fermilab E989

→𝜔 𝑎 =  
𝑒
𝑚

𝑎𝜇 
→
𝐵   −  (𝑎𝜇  −  

1
𝛾2 − 1 )

→
𝛽 ×

→
𝐸

𝑐



 
MUONS IN B AND E FIELD 

▪ In presence of additional E-field:

5

Magic momentum (γ = 29.3, p=3.094 GeV/c) 
E field for vertical focusing 
CERN-III, BNL E821, Fermilab E989

→𝜔 𝑎 =  
𝑒
𝑚

𝑎𝜇 
→
𝐵   −  (𝑎𝜇  −  

1
𝛾2 − 1 )

→
𝛽 ×

→
𝐸

𝑐
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Weak magnetic focusing 
J-PARC E34



 
MUONS IN B AND E FIELD 

▪ In presence of additional E-field:

▪Measuring the anomalous moment aµ requires both

1. the spin precession frequency ωa

2. the magnetic field B (through NMR spectroscopy of proton)
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Magic momentum (γ = 29.3, p=3.094 GeV/c) 
E field for vertical focusing 
CERN-III, BNL E821, Fermilab E989
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ωa = e/m aµ B



 
RUN-1 ANALYSIS STATUS: ωa 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PRELIMINARY

𝑁(𝑡) =  𝑁0 𝑒−𝑡/𝜏[1 − 𝐴cos(𝜔𝑎𝑡 + 𝜙)]
▪ Simple 5-parameter fit captures the main features of the “wiggle plot”:




Run plan and expected statistics
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Muon g-2/EDM 
experiment 
at J-PARC

Features: 
• Low emittance muon beam (1/1000) 
• No strong focusing (1/1000) & good injection eff. (x10) 
• Compact storage ring (1/20)  
• Tracking detector with large acceptance Credit: T. Mibe
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Theory v. experiment (muon g-2 theory initiative baseline)

From T. Teubner:
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magnetic moment of free muon is    g,  g=2 s𝑝𝑖𝑛  ×
𝑒 

2𝑚



Muon g-2 Theory Initiative
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0.54 PPM

0.37 PPM
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Hadronic vacuum polarization (HVP) I: data driven (e+e-)
Credit: T. Teubner

Magnetic part:



aµ-HVP from data
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More precise than lattice determination. Total error 
larger than DHMZ and KNT separately.  

Data from BABAR, BESIII, CMD-2, KLOE, SND 

“Merged” value from DHMZ, KNT, and CHHKS 
(simple average in each channel for central value, 
conservative combination of errors). Errors statistical 
and systematic 
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Data sets disagree outside of quoted errors, 
leads to differences in analysis too. 

Some differences cancel in integrated 
quantities
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aµ-HVP from data
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Prospects for improvement: 

• Better/more analysis of existing data (BABAR, KLOE) 
• More data from CMD-3, Belle II, BESIII, BESCII, SND  
• Include τ-decay data when isospin breaking properly understood 

(lattice may help) 
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Hadronic vacuum polarization II: Lattice QCD

Calculate C(t) on 4d  
Euclidean space-time lattice
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Hadronic vacuum polarization II: Lattice QCD

Calculate C(t) on 4d  
Euclidean space-time lattice

RBC/UKQCD 2018



aµ-HVP from Lattice QCD+QED
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aµ-HVP from Lattice QCD+QED
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 HVP (Lattice): aµ = 7116 (184) x 10-11
(2.6%)

HVP (pheno):  aµ = 6931 (40) x 10-11
(0.58%)

HVP (BMW-20): aµ = 7087 (53) x 10-10
(0.75%)

 BMW-20 – pheno  ≈ 15 . 6 (6.6)



The connected light quark contribution

aµ
HVP, ll = 650.2 (11.6) x 10-10

Large spread ~630-675 x 10-10

BMW-20   634.6 (2.7)(3.7)

add 18.1(2.0)(1.4) for FVE

State-of-the-art is to use physical quark masses 
(Significant chiral extrap in ETM and Mainz/CLS)
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(Does not include BMW-20)



Long distance contributions  
and the statistical error 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Low Mode Average: RBC/UKQCD-18,  
Aubin, et al.-19, BMW-20 (C(t) averaged  
over all EM current source-sink pairs) 

Correlator reconstruction: Mainz, RBC/UKQCD

Aubin, et al.-19

mπ =133 MeV

Mainz-19
mπ =200 MeV

Dominated by two pion states at large time



Bounding method 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(much) Shorter distances possible

RBC/UKQCD (preliminary)

Statistical error 6x smallerFHM-19

Fit method  
FHM-19, ETM-19

A. Meyer, et al.

Mainz-19, RBC/UKQCD: Improved method  
using long distance correlator reconstruction

Original method:  
BMW-17,20,  RBC/UKQCD-18

t/a t/a

replace data beyond t*

with multi-exponential,  
multi-operator fit
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RBC/UKQCD (preliminary)



BMW-20 continuum extrapolation ( MΩ + w0) 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634.6 (2.7)(3.7)(0.5)(...) x 10-10 (stat, taste, CL, …)

Lref = 6.272 fm  =  Tref
2
3

 
(FV correction 18.7(2.5), IB 5.7(…)) w0 = 0.17236(29)(63) fm

(0.4%)

aµ + a2  (+a4)



RBC/UKQCD-18 continuum limit ( MΩ ) 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Light quark: 647.9 (14.2)(2.8)(1.5)(3.7)(…) x 10-10 (statistical, a4, scale setting, FV, …) 
           total: 705.9 (14.6)(2.9)(1.8)(3.7)(…) x 10-10 (statistical, a4, scale setting, FV, …) 

• a-1 = 1.730 GeV results differ by a few  
     percent  from continuum limit 
• 2.7 GeV lattice underway to compliment  
     1.730, and 2.359 GeV  

aµ
   +  𝑎2

(strange quark contribution)
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Light quark: 647.9 (14.2)(2.8)(1.5)(3.7)(…) x 10-10 (statistical, a4, scale setting, FV, …) 
           total: 705.9 (14.6)(2.9)(1.8)(3.7)(…) x 10-10 (statistical, a4, scale setting, FV, …) 

• a-1 = 1.730 GeV results differ by a few  
     percent  from continuum limit 
• 2.7 GeV lattice underway to compliment  
     1.730, and 2.359 GeV  

aµ
   +  𝑎2

(strange quark contribution)

• More than doubled statistics on current ensembles 
• Improved bounding method 
• Estimate sub-percent total error with these improvements 
• Need to add 3rd lattice spacing to reach  0.7 % error



Aubin, et al.-20 continuum limit ( fπ + w0, from FHM 19) 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651 (20)(5)(5) x 10-10  
  

Statistical, CL fit, scale setting (includes NLO taste breaking (and FV) corrections)

aµ

  + 𝑎2 

• taste symmetry breaking large 
• corrected at NLO in SChPT

Fit

FV

FV + taste

FV + taste + mp mis-tuning
no correction

(Light quark contribution)



Aubin, et al.-20 continuum limit ( fπ + w0, from FHM 19) 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651 (20)(5)(5) x 10-10  
  

Statistical, CL fit, scale setting (includes NLO taste breaking (and FV) corrections)

aµ

  + 𝑎2 

• taste symmetry breaking large 
• corrected at NLO in SChPT

Fit

FV

FV + taste

FV + taste + mp mis-tuning
no correction

• More than doubled statistics on finest ensemble 
• Improved low-mode average on finest ensemble 
• Added new coarsest ensemble 
• Adding statistics for two finest ensembles 
• Aiming for 1% total 

(Light quark contribution)



Disconnected contributions
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BMW 20  -13.15(1.28)
(1.29)

• More groups needed 

• Includes strange 
contribution [Mainz] 

• Statistical and 
systematic errors 
important



Isospin symmetry breaking corrections 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Isospin symmetry breaking corrections 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Collaboration QED Strong IB

V+S (+ST) F (+D3) M O

BMW-20 -1.27(40)(33) -0.55(15)(11) 6.59(63)(53) -4.63(54)(69)

ETM-19 1.1(1.0) 6.0(2.3)

RBC/UKQCD-18 5.9(5.7)(…) -6.9(2.1)(1.4)(…) 10.6(4.3)(…)

FHM-19  1.5(7) % aµ
ll

LM-20 9.0(0.8)(1.2) 

• statistical errors large (except BMW-20, LM-20) 
• Spread is relatively large  
• FV effects can be very large (e.g., see LM-20) 
• large cancelations



Towards precise comparisons: the window method 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/2𝛩(𝑡, 𝑡′￼, 𝛥) = [1 + tanh( t − t′￼

∆ )]

(ud connected, 0.4 – 1.0 fm window)

RBC/UKQCD-18

Aubin, et al.-19

KNT-19 – lattice s, c, … 

[RBC/UKQCD-18]
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• Staggered results lie above DWF, R-ratio

• Conserved v. local currents

• More groups need to investigate

• Gradually increase size of window

• Compare with R-ratio (e.g., investigate BaBar KLOE discrepancy)
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/2𝛩(𝑡, 𝑡′￼, 𝛥) = [1 + tanh( t − t′￼

∆ )]

(ud connected, 0.4 – 1.0 fm window)

RBC/UKQCD-18

Aubin, et al.-19

KNT-19 – lattice s, c, … 

[RBC/UKQCD-18]

• Staggered results lie above DWF, R-ratio

• Conserved v. local currents

• More groups need to investigate

• Gradually increase size of window

• Compare with R-ratio (e.g., investigate BaBar KLOE discrepancy)


November 2020 workshop on HVP, Harmut Wittig



Strange and charm contributions 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BMW-20    14.6(0)(1)
BMW-20   53.393(89)(68)



Strange and charm contributions 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Seem to be in good shape

BMW-20    14.6(0)(1)
BMW-20   53.393(89)(68)



To reach desired precision (2-5 per-mil?) 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• Strange, charm contributions in good shape (will not resolve issues) 

• FV corrections  (  reliable (NNLO PT, LLGS, HP) 
       Important to have a big box (BMW, PACS use L = 10 fm) 

• Statistical precision top priority for DW, TM, Wilson (in the works)  
       Improved bounding method using low-lying states for long distance tail 

• Must work directly with physical masses (most groups already) 

• More, more precise disconnected and IB calculations needed 
       Some spread in results, not all diagrams computed 

• Continuum limit and scale setting (per-mil) crucial.  
       At least 3 lattice spacings in a2-scaling regime  
       Are (N)NLO and LLGS taste corrections enough? 
       All groups need to investigate windows in Euclidean time 
       Is fπ good enough (EM corrections)?

𝐿 > 6 fm) 𝜒



aµ-HLbL from data and models
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aµ-HLbL from data and models
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Good agreement between  
data/dispersive and lattice approaches



aµ-HLbL from data and models
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aµ-HLbL from data and models
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• Huge improvement in pole contributions 
• All contributions computed or estimated

• Errors added in quad for dispersive results 
• Errors added linearly for model-dependent results



Lattice HLbL
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• RBC: first lattice calculation with all errors controlled.


• 1 G core-hours on ALCF’s Mira (BG/Q). 


• 1st HLbL calculation was done on USQCD resources                                     
(Blum, et al., PRL 114 (2015))


• Crucial for Standard Model Comparison


• Included in Muon g-2 Theory Initiative average


• 92(19)x 10-11 (phenomenology)


• 90(17)x 10-11 (phenomenology+lattice)


• Unlikely to explain discrepancy with experiment


𝑎HLBL
𝜇 = 7.87 ± 3.06 ± 1.77 × 10−10

Blum, et al. (RBC) PRL 124 (2020)

Editor’s Suggestion



aµ-HLbL outlook

• More data for pheno (…)


• RBC: QED  calculation, 10-20% accuracy (5 yrs)


• Other lattice groups starting (Mainz, BMW, FHM, …)


• Combined 10% result (or better) within 5 years possible

∞
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What could BSM theory look like?

• Supersymmetry


• Leptoquarks


• Light scalar 


• Two higgs doublets 

• … 
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SUSY at LHC
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χ0

µ

JHEP04 (2020) 165  



Leptoquarks

arXiv:1905.03789

JHEP06 (2020) 089  
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Electron g-2 and Light scalar
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arXiv:1806.10252v2  

• New value for α leads to  
    2.4-σ discrepancy for ae 
      with opposite sign to aµ 

• Newer value knocks that  
     down to 1.6, same sign

few GeV2 𝑚𝜇  < 𝑚𝜑 <   



Outlook
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• SM is a remarkable success 

• Muon g-2 best chance for new physics 
	  at the moment 

• Fermilab Muon g-2 experiment E989  
    to announce 1st results very soon


