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One can try to find possible and motivated extensions of 
the standard model…

4.3 Non-WIMP dark matter 17
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Figure 4-7. The landscape of dark matter candidates [from T. Tait].

Figure 4-8. The range of dark matter candidates’ masses and interaction cross sections with a nucleus of
Xe (for illustrative purposes) compiled by L. Pearce. Dark matter candidates have an enormous range of
possible masses and interaction cross sections.

Community Planning Study: Snowmass 2013
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…or look for deviations of experimental observations with 
SM expectations

CERN
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To truly understand if Standard Model describes data 
observed at LHC, need to connect theory and data

For this, need to be able to go from Lagrangian 
to fully exclusive events
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Simulating a fully exclusive event is very difficult, and 
many more or less controlled approximations are needed

While the hard interaction
     only produces small number 
           of particles, subsequent 
             radiation produces lots 
             more in final state. 

             Impossible
             to compute full results
             in perturbation theory

       Need ways to perform
    calculations that allows to 
 deal with this high multiplicity and
non-perturbative physics

No known (classical) algorithm to do the required calculations in full 
generality

Sherpa collaboration
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The issues with 
classical techniques

How a quantum 
computer can help

Recent work on 
concrete problems
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The issues with 
classical techniques
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The best known numerical technique for QFTs is Lattice 
Field Theory

⟨qF(T ) |e−iH(2T )/ℏ |qI(−T )⟩ = ∑
paths

exp [iS]
Start from the path integral formulation

Discretize paths by putting space time on hypersurface

−T

T

qI qF

⟨qF(T ) |e−iH(2T)/ℏ |qI(−T )⟩ = ∑
{xi(tj)}

exp [iS]

Sample over all possible values {xi(tj)}
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The best known numerical technique for QFTs is Lattice 
Field Theory

Complex exponent has rapidly oscillating phase, 
can not integrate by MC method efficiently

But this does not allow real time simulation and inherently Minkowskian objects

Standard Lattice techniques use Wick rotation t → iτ
⟨qF(𝒯) |e−H(2𝒯)/ℏ |qI(−𝒯)⟩ = ∑

xi(tj)

exp [−S]

Can now be calculated with errors that scale statistically with , 
independent of number of lattice points

Nevents

⟨qF(T ) |e−iH(2T)/ℏ |qI(−T )⟩ = ∑
{xi(tj)}

exp [iS]
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How a quantum 
computer can help
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Can use directly the time evolution between initial and final 
state 

⟨qF(T ) |e−iH(2T)/ℏ |qI(−T )⟩

For full QFT, Hilbert space is infinite dimensional
(both position and field values are continuous)

Hilbert space has dimension

(nϕ)
Nd  # of digitized field values

 # of lattice points per dim
 # of dimensions

nϕ :
N :
d :

ϕn1
ϕn2

ϕn3
ϕn4

l
L

L = N l

Turn into finite dimensional Hilbert space by discretizing both spatial directions 
and field values

Situation more complicated 
for gauge theories
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Can use directly the time evolution between initial and final 
state 

⟨qF(T ) |e−iH(2T)/ℏ |qI(−T )⟩

After discretization, states are vectors in the finite dimensional Hilbert space, 
while Hamiltonian is a matrix

Matrix element can now be computed through matrix multiplication

But is a very large number, so this is completely intractable using 

standard (classical) calculations 
(nϕ)

Nd

Quantum computers can do the calculation with resources (number of qubits and 
number of operations) that scale logarithmically in the size of Hilbert space
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Let’s try to estimate the resources we need to simulate 
physics at the LHC

Energy rage that can be 
described by lattice is given by

1
Nl

≲ E ≲
1
l

To simulate full energy range 
of LHC need 

100 MeV ≲ E ≲ 7 TeV

This needs  lattice sites𝒪(70,0003) ∼ 1014

Assume I need at least 5 bit digitization ⇒ nϕ = 25 = 32

Dimension of Hilbert space is 
321014 ∼ ∞

Number of qubits and required
5 × 1014
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HEP theory developments in quantum computing deal with 
2 large classes of problems

1. Find good Lattice representations of the Hamiltonian of the gauge 
theories of the Standard Model

2. Develop techniques that allow to compute phenomenologically 
meaningful results with reasonable resource requirements
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Recent work on 
concrete problems
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The continuum Hamiltonian of QED is very simple, 
consisting of a magnetic and electric component

H = ∫ddx [E2(x) + B2(x)]

⃗B (x) = ⃗∇ × ⃗A (x)

⃗E (x) = − ∂ ⃗A (x)/∂t

E and B have simple relations to the gauge field
(working in  gauge)A0 = 0
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Consider a spacial lattice, similar to what we considered 
before for a scalar theory

n n + ̂x

n + ̂y

n − ̂x

n − ̂y
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Gauge fields are related to derivatives, so are related to 
differences of sites, and live on links

n n + ̂x

n + ̂y

A(n, ̂x)

A(n, ̂y)

A(n − ̂y, ̂y)

A(n − ̂x, ̂x)
n − ̂x

n − ̂y
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Gauss’ law (part of gauge invariance) dictates that 
divergence of electric field vanishes (without charges)

n n + ̂x

n + ̂y

E(n, ̂x)

E(n, ̂y)

E(n − ̂y, ̂y)

E(n − ̂x, ̂x)

n − ̂y        ⃗E = ⃗∇ × ⃗R

n − ̂x
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Instead of electric field, can use a field R, which lives on a 
“plaquette”. This automatically preserves gauge invariance

n n + ̂x

n + ̂y

R( ̂n)

n − ̂x

n − ̂y
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Conjugate variable is precisely the magnetic field that 
appears in the Hamiltonian

n n + ̂x

n + ̂y

B( ̂n)

n − ̂x

n − ̂y
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One can write Lattice version of Hamiltonian entirely in 
terms of rotors and magnetic fields

H = ∑
p∈plaq

[g2HE[Ri] +
1
g2

HM[Bi]]

Since ,  and  can not be diagonalized simultaneously[HE, HM] ≠ 0 HE HB

There is considerable interest in “compact” U(1) gauge theory, where 
−π < Bi < π

In limit  useful to work in electric basis, where  is diagonalg → ∞ HE

In limit  useful to work in magnetic basis, where  is diagonalg → 0 HB
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One can construct both magnetic and electric basis, and 
each work in the coupling limit they are designed for

characteristic of the mentioned freezing e↵ect.
Concluding, both the Fourier and the sequence fi-

delities in Eqs. (31) and (33) are two tools to assess
the convergence of and agreement between the two
representations. While the sequence fidelity must be
applied in the extremal regimes, the Fourier fidelity
yields a valuable quantification of the combined ca-
pabilities of the two representations for intermediate
values of the bare coupling.

4.3 Estimation of È⇤Í
We now apply the tools developed in Sec. 4.2 to calcu-
late the expectation value È⇤Í as defined in Eq. (16).
The value of È⇤Í with respect to the system’s ground
state is an important quantity in LGTs, as it can be
related to the running of the coupling [31].

In the absence of dynamical matter, the total
Hamiltonian solely consists of the two gauge field con-
tributions. Therefore, we may determine a value gm
separating the regimes where either of the respective
representations is advantageous.

Let gm be the value of g for which the Fourier
fidelity in Eq. (31) is maximal with respect to the
ground state, i.e.

Fgm(l) = max
L>l

g

---ÈGS
(b)

(L, l, g)|F̂(L, l)|GS
(e)

(l, g)Í
--- .

(34)

Since the electric (magnetic) representation shows
exceeding performance in the strong (weak) coupling
regime, we can assume that for a given truncation l,
the best approximation is achieved by considering the
electric representation in the range g œ [gm, Œ) and
the magnetic one for g œ [0, gm] (compare also Sec. 4.2
and Fig. 3).

Fig. 4 shows È⇤Í for various truncations, derived
both in the electric [panel (a)] and magnetic [panel
(b)] representation. In the latter, we obtained the
Lopt values that have been used for plotting via the
sequence fidelity as described above. From here, the
true curve as it would be obtained from the untrun-
cated U(1) theory can be estimated via the asymp-
totic values of the di↵erent representations when the
truncation l is increased, since in the limit l æ Œ both
representations converge to the full theory. We exem-
plify such an estimation with the inset in Fig. 4(a),
that contains the results for di↵erent l at g

≠2
= 10.

The convergence can be clearly observed, and both
representations yield the same result up to the fourth
decimal at l = 10 (È⇤Í = 0.9572 ± 0.0001). Note that
this convergence is not necessarily monotonic. How-
ever, in the extremal regimes, we observe that the
expectation value of ⇤ increases with the truncation
l when employing the electric representation, while it
decreases with the magnetic one, for which we will
provide analytical arguments in App. D.

To summarize this section, we recall that a naive
approximation of U(1) with 2L+1 (with L fixed)

Figure 4: Estimation the plaquette operator. Panel (a)
displays the obtained curves in the electric representation,
where the line styles correspond to di�erent values of the
truncation l. For the magnetic representation in panel (b),
each point has been obtained via the optimisation of the
sequence fidelity over L. We stress the considerably higher
resource requirements (l) of the electric representation for
calculations in the regime g≠2 > 1. The inset in (a) shows
the values for the di�erent representations for all values of l
shown here when g≠2 = 10.

leads to dramatically increasing computational costs
when working on a wide range of g-values. As ex-
plained intuitively in Sec. 3, the problem originates
from the fact that 2L+1 converges not uniformly but
pointwise to U(1). For fixed resolution L and fixed
computational resources l, there is always a coupling
g small enough such that the Z2L+1 description dis-
plays freezing and hence cannot approximate the U(1)

continuum physics accurately. This can be under-
stood by noting that the magnetic field Hamiltonian
is gapless in both the continuum theory and in the
U(1)-lattice description, but gapped in the 2L+1-
formulation. For fixed L and decreasing g, the o↵-
diagonal elements in the Hamiltonian ĤE decrease
with respect to the energy gap in ĤB (as explained
in more detail in Sec. 4.1). If the energy in the sys-
tem becomes comparable to the gap, the di↵erence
between 2L+1 and the true gauge group U(1) be-
comes noticeable, which leads to the freezing e↵ect
(see Fig. 3). Crucially, working with a value of L

suitable for the regime g π 1 will lead to exploding
computational costs, i.e. will require very large val-
ues of l, in the intermediated coupling regime g ¥ 1

to capture the relevant physics there. Our solution
to this problem is the dynamical adjustment of the
parameter L with the coupling g, that allows us to
approximate U(1) well for a wide range of couplings
while including only a minimal number of states in
our simulation (see Fig. 2).

Accepted in Quantum 2021-01-20, click title to verify. Published under CC-BY 4.0. 14
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We developed a new representation of Hilbert space, that 
works in both limits of the coupling
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Let’s try to estimate the resources we need to simulate 
physics at the LHC

Energy rage that can be 
described by lattice is given by

1
Nl

≲ E ≲
1
l

To simulate full energy range 
of LHC need 

100 MeV ≲ E ≲ 7 TeV

This needs  lattice sites𝒪(70,0003) ∼ 1014

Assume I need at least 5 bit digitization ⇒ nϕ = 25 = 32

Dimension of Hilbert space is 
321014 ∼ ∞

Number of qubits and required
5 × 1014
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Since biggest difficulty is with long distance physics, 

Goal is to separate ingredients that are calculable in perturbation theory from 
those that really benefit from non-perturbative techniques

Effective Field Theories (SCET)

dσ = H ⊗ J1 ⊗ … ⊗ Jn ⊗ S

Most interesting object in above equation is the soft function , 
which lives at the lowest energies

S

For 1TeV jets with 100GeV mass, find 
ΛS = (100 GeV)2/(1000 GeV) = 10 GeV
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Let’s try to estimate the resources we need to simulate 
physics at the LHC

As I will argue later, can use effective field theories to limit required range to 

100 MeV ≲ E ≲ 10 GeV

This needs  lattice sites𝒪(1003) ∼ 106

Dimension of Hilbert space is 
32106 ∼ ∞

Number of qubits required
5 × 106
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Soft function is the expectation value of a “Wilson line” 
operator between initial and final state

S = ⟨X |T[YnY†
n̄] |Ω⟩

2

Have worked out quantum circuit to create vacuum state , circuit for  
and circuit to measure final state 

|Ω⟩ T[YnY†
n̄]

|X⟩

4

To implement the Wilson line operator we first rewrite
the time-ordered product of the two Wilson lines as

T[Yn Y
†
n̄ ] = e

�iH n0�x exp
⇥
ig �x

�
�x2n0

� �x0

�⇤
(13)

⇥ e
iH�x exp

⇥
ig �x

�
�x2n0�1 � �x1

�⇤

⇥ · · ·⇥ e
iH�x exp

⇥
ig �x

�
�xn0

� �xn0

�⇤
,

where we have used the time translation operator to
make the time dependence on the field operators explicit.
Thus, the Wilson line operator consists of a sequence of
time-evolution operators for a time interval correspond-
ing to the lattice spacing and exponentials of the field
operator. The last time evolution evolves the state back
from the largest time to which the Wilson lines can be
sensibly evolved, namely tmax = n0 �x, to t = 0 at which
all states are defined.

Ultimately, to make contact with the continuum field
theory any such simulation will have to be performed on
a series of increasing lattices, and the result extrapolated
to the N ! 1, �x ! 0 limit. Any parameters of the the-
ory present in the continuum must be suitably matched
for this procedure to yield meaningful results. For lo-
cal terms in the Hamiltonian, this procedure is discussed
in detail in [5]. Dealing with a massless theory simpli-
fies this procedure since only local interactions (of which
in the present case there are none) need to be matched.
However, the EFT will also require the matching of Wil-
son line operators, which is complicated by their non-
local nature and sensitivity to total lattice size, as dis-
cussed in the Supplemental Materials. In this letter, we
work at fixed lattice size and we leave the detailed inves-
tigation of these issues to future work.

The implementation of the exponential of the field op-
erator, as well as the time evolution operator, follows
the discussion in [8] and uses the fact that the digitized

field �
(k)
i

can be written in terms of sums of �z opera-
tors. This implies that the exponential of products of
fields �i can be implemented through combinations of
CNOT gates and RZ rotations [6–8]. The exponential of
the conjugate operator �̇

2 can be implemented by tak-
ing a quantum Fourier transformation of the exponential
of the operator �

2. These can then be combined via
the Suzuki–Trotter formula [49–51]. For details, see the
Supplemental Materials. The initial ground state of the
scalar field theory is a multi-variate Gaussian distribu-
tion, which can be created using the approach of Kitaev
and Webb (KW) [52]. To identify states of definite multi-
plicity and momentum in |Xi one can follow the general
ideas laid out in [1, 5].

Our quantum circuit has been implemented in
Qiskit [53] and is available from the authors upon re-
quest. In this first exploratory paper we compute the
foundational quantities, namely

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2

(14)

for |Xi = |⌦i and |Xi = |pii, the one-particle momentum
eigenstates of the theory. It should be noted that these
quantities are not infrared (IR) safe, and will therefore
depend on the IR scale in the problem, the lattice size L.
However, as discussed in more detail in the Supplemental
Materials, there is no non-trivial IR safe observable that
can be defined in (1+1) dimensions, and these transition
rates are therefore representative quantities of what can
be computed in this theory.

The quantum circuit for this measurement can be rep-
resented as

|l0i /

U⌦ UY U
†
X

|. . .i /

|lN�1i /

where |lni denotes the register of qubits for the n
th lat-

tice site. This creates the multivariate Gaussian vacuum
state from the initial state with all qubits zero using U⌦,
acts on this vacuum with the time ordered product of
the two Wilson lines using UY , and finally applies the in-
verse of the state preparation of state |Xi. The details of
these various circuits can be found in the Supplementary
Material.
For our numerical results, we work with an N = 3 site

lattice with spacing �x = 1. With only 3 lattice sites, the
Wilson line operator simplifies to

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2
=

���hX|e
ig�x(�x2��x0)|⌦i

���
2
,

(15)

since all time evolution operators act on the initial or fi-
nal eigenstate of the Hamiltonian only and can therefore
be neglected as contributing an overall phase. In Fig. 1
we show the dependence of the expectation values YX

on the coupling g for nQ = 2 qubits per lattice site for
di↵erent final states, and compare them against the ana-
lytical results, shown by black lines. Results are given for
both a quantum simulation and from the 65-qubit IMBQ
Manhattan quantum computer. The operators for imple-
menting all states are exact, as the resources for doing so
on a small lattice are modest. On a larger lattice approx-
imate methods, such as KW ground state approximation
and the excited state preparation techniques of [5] will be
necessary; the e↵ect of such approximations is presented
in the Supplementary Material.
Errors in the quantum circuits, especially readout er-

rors and CNOT gate errors are quite large on existing
hardware. As discussed in the Supplemental Materials,
the exponential of the field operator at a given position
requires only nQ single qubit gates, such that the opera-
tor in Eq. (15) requires no CNOT gates. For nQ = 2, he
state preparation requires 6 CNOT gates for gates. Note
that for more than 3 lattice sites the time evolution op-
erator is required, which requires a much larger amount

CWB, Freytsis, Nachman, PRL 127 (2021), 212001
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Soft function is the expectation value of a “Wilson line” 
operator between initial and final state

Quantum computer gives a good description of the analytical result

CWB, Freytsis, Nachman, PRL 127 (2021), 212001
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Quantum 
Computing in 

Physics 
Division

Formulation of Field 
Theories suited for 

simulation on quantum 
devices

Effective Field Theory 
treatment to allow 

quantum simulation of 
non-perturbative 

physics

Development of 
quantum parton 

showers

Improving techniques to 
use NISQ devices for 
near term simulations
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