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One can try to find possible and motivated extensions of

the standard model...
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...or look for deviations of experimental observations with
SM expectations
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To truly understand if Standard Model describes data
observed at LHC, need to connect theory and data
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For this, need to be able to go from Lagrangian
to fully exclusive events
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Simulating a fully exclusive event is very difficult, and
many more or less controlled approximations are needed

While the hard interaction

9. only produces small number
= PEe of particles, subsequent

\ o radiation produces lots

| more in final state.

e ., Impossible
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_ S to compute full results

. N In perturbation theory

Sherpa collaboration ‘. b l o
e N\ Need ways to perform
vy T Ta calculations that allows to
Y Ve'e ®° ‘,“ deal with this high multiplicity and
Sy non-perturbative physics

No known (classical) algorithm to do the required calculations in full

| generality
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—_— The issues with
: Porlmto. 1 classical techniques
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The best known numerical technique for QFTs is Lattice
Field Theory

Start from the path integral formulation

(gpr(T) | e HEDR | g(=T)) = Z exp [iS]
paths

Discretize paths by putting space time on hypersurface

(D) e g~y = 3 explis
{x:(5) }

Sample over all possible values {x,(#)}
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The best known numerical technique for QFTs is Lattice
Field Theory

(gr(T) | e HEDM| g (=T)) = Z exp [iS]
{x(5)}

Complex exponent has rapidly oscillating phase,
can not integrate by MC method efficiently

Standard Lattice techniques use Wick rotation ¢t — it
(T ) 11T q(=T)) = exp [-S]

xi(tj)

Can now be calculated with errors that scale statistically with \/Ne
iIndependent of number of lattice points

vents?

But this does not allow real time simulation and inherently Minkowskian objects
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How a quantum
computer can help
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Can use directly the time evolution between initial and final
state

(q(T) | e HEDM| g.(~T))

For full QFT, Hilbert space is infinite dimensional
(both position and field values are continuous)

Turn into finite dimensional Hilbert space by discretizing both spatial directions
and field values

g P, _ . .
® 0 Hilbert space has dimension
® O v Mg # of digitized field values
(n¢> N : # of lattice points per dim
® O d : # of dimensions
¢ o Situation more complicated
> for gauge theories
| @ @
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Can use directly the time evolution between initial and final
state

(q(T) | e HEDM| g.(~T))

After discretization, states are vectors in the finite dimensional Hilbert space,
while Hamiltonian is a matrix

Matrix element can now be computed through matrix multiplication

Nd
But <n¢> IS a very large number, so this is completely intractable using

standard (classical) calculations

Quantum computers can do the calculation with resources (number of qubits and
number of operations) that scale logarithmically in the size of Hilbert space
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Let’s try to estimate the resources we need to simulate
physics at the LHC

Energy rage that can be To simulate full energy range
described by lattice is given by of LHC need
L,gE,{,l 100MeV S E S 7TeV
NI [

This needs 0(70,000%) ~ 10'# Iattice sites
Assume | need at least 5 bit digitization = 7, = 2> =32

Dimension of Hilbert space is
3210% 1

Number of qubits and required
5% 1014
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HEP theory developments in quantum computing deal with
2 large classes of problems

1. Find good Lattice representations of the Hamiltonian of the gauge
theories of the Standard Model

2. Develop technigues that allow to compute phenomenologically
meaningful results with reasonable resource requirements

~ .
U . .
:r_rﬁ‘ | Christian Bauer

BERKELEY LAB Quantum Computing for HEP




Recent work on
concrete problems
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The continuum Hamiltonian of QED is very simple,
consisting of a magnetic and electric component

H = |d% [Ez(x) + Bz(x)]

E and B have simple relations to the gauge field
(working in Ay = 0 gauge)

!

B(x)=V X A(x)

—

E(x) = — 0A (x)/0t
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Consider a spacial lattice, similar to what we considered
before for a scalar theory

~
U . .
:r_rﬁ‘ | Christian Bauer

BERKELEY LAB Quantum Computing for HEP




Gauge fields are related to derivatives, so are related to
differences of sites, and live on links
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Gauss’ law (part of gauge invariance) dictates that
divergence of electric field vanishes (without charges)
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Instead of electric field, can use a field R, which lives on a
“plagquette”. This automatically preserves gauge invariance
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Conjugate variable is precisely the magnetic field that
appears in the Hamiltonian
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One can write Lattice version of Hamiltonian entirely in
terms of rotors and magnetic fields

|
H = Z g Hg[R;] + — Hy|B;]

pEplaq 5

There is considerable interest in “compact” U(1) gauge theory, where
—n< B, <n=x

Since [Hg, H,;] # 0, H; and Hy can not be diagonalized simultaneously

In limit g — oo useful to work in electric basis, where H is diagonal

In limit g — O useful to work in magnetic basis, where Hy is diagonal
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One can construct both magnetic and electric basis, and
each work in the coupling limit they are designed for

Haase et al, 2006.14160
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We developed a new representation of Hilbert space, that

works in both limits of the coupling
CWB, Grabowska, 2111.08015
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Let’s try to estimate the resources we need to simulate
physics at the LHC

Energy rage that can be To simulate full energy range
described by lattice is given by of LHC need
L,gE,{,l 100MeV S E S 7TeV
NI [

This needs 0(70,000%) ~ 10'# Iattice sites
Assume | need at least 5 bit digitization = 7, = 2> =32

Dimension of Hilbert space is
3210% 1

Number of qubits and required
5% 1014
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Since biggest difficulty is with long distance physics,

Goal is to separate ingredients that are calculable in perturbation theory from
those that really benefit from non-perturbative techniques

Effective Field Theories (SCET)

d6=H®J ®..®J &S

Most interesting object in above equation is the soft function .5,
which lives at the lowest energies

For 1TeV jets with 100GeV mass, find
Ag = (100 GeV)?/(1000 GeV) = 10 GeV
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Let’s try to estimate the resources we need to simulate
physics at the LHC

As | will argue later, can use eftective field theories to limit required range to

100MeV < E S 10GeV

This needs O(100°) ~ 10° lattice sites

Dimension of Hilbert space is
3210° © oo

Number of qubits required
5% 10°
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

S= [(X|T[Y,Y!]|Q) ‘2

Have worked out quantum circuit to create vacuum state | £2), circuit for T[YnY;]
and circuit to measure final state | X)

CWB, Freytsis, Nachman, PRL 127 (2021), 212001
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Soft function is the expectation value of a “Wilson line”

operator between initial and final state
CWB, Freytsis, Nachman, PRL 127 (2021), 212001
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CWB, Freytsis, Nachman,
PRL 127, 212001

-  CWB, Grabowska
2111.08015

 CWB, Delyiannis, Freytsis, Nachman,
2109.10918

Formulation of Field
Theories suited for

simulation on quantum
devices

* Pascuzzi, He, CWB, dedJong, Nachman,
2110.13338

* Hicks, Kobrin, CWB, Nachman,
2108.12432

* Urbanek, Nachman, Pascuzzi, He, CWB, dedong,
PRL 127, 270502

 Jangetal,
2101.10008
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Effective Field Theory
treatment to allow
quantum simulation of
non-perturbative
physics

Quantum
Computing in
Physics
Division

Improving techniques to
use NISQ devices for
near term simulations

Christian Bauer
Quantum Computing for HEP

* Provasoli, Nachman, deJong, CWB,
Quantum Sci. Technol. 5, 5

CWB, dedJong, Nachman, Provasoli,
PRL 126, 062001

Development of

gquantum parton
showers

Hicks, Bauer, Nachman,

PRA 103, 022407

He, Nachman, deJong, CWB

PRA 102, 012426

Nachman, Urbanek, deJong, CWB,
NPJ Quant. Inf. 6, 84

Urbanek, Nachman, dedong,

PRA 102, 022427
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