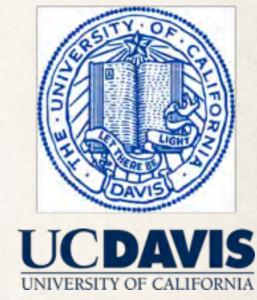
Effective field theories from scattering amplitudes

Jaroslav Trnka

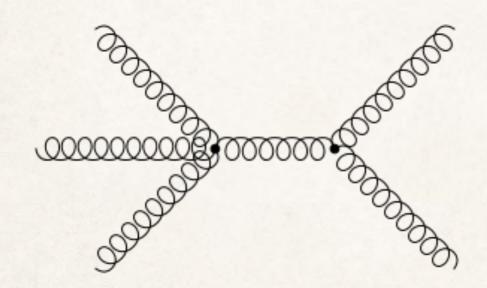
Center for Quantum Mathematics and Physics (QMAP) University of California, Davis



with Clifford Cheung, Karol Kampf, Jiri Novotny, Chia-Hsien Shen (related with Nima Arkani-Hamed, Laurentiu Rodina)

Scattering amplitudes

Predictions of outcomes of particle interactions



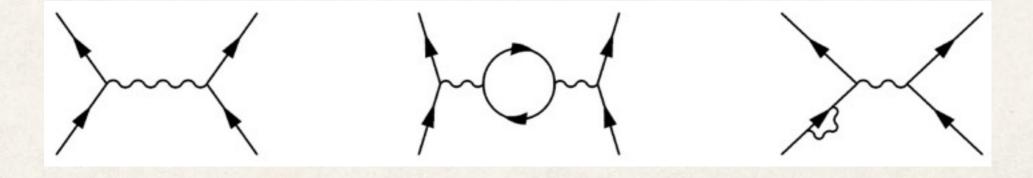
Other motivation: probes to study QFT

Feynman diagrams

Fields, Lagrangian, Path integral

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \overline{\psi} \not\!\!\!D \psi - m \overline{\psi} \psi \qquad \int \mathcal{D} A \, \mathcal{D} \psi \, \mathcal{D} \overline{\psi} \, e^{i S(A, \psi, \overline{\psi}, J)}$$

Feynman diagrams: pictures of particle interactions Perturbative expansion: trees, loops



Unexpected simplicity

Tree-level amplitudes of gluons in massless QCD

1985: calculation of 6pt amplitude for SSC

Brute force calculation: 100 pages like that

$$(k_1 \cdot k_4)(\epsilon_2 \cdot k_1)(\epsilon_1 \cdot \epsilon_3)(\epsilon_4 \cdot \epsilon_5)$$

Ughhh....

Unexpected simplicity

(Parke, Taylor 1985)

Tree-level on-shell amplitudes of gluons in massless QCD

Surprisingly simple answer

$$\mathcal{M}_6 = \frac{\langle 12 \rangle^3}{\langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle}$$

Parke-Taylor formula for helicities (++++--)

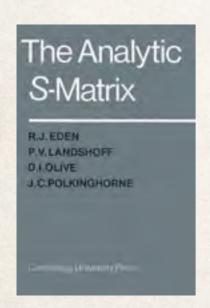
Spinor-helicity variables for massless particles

$$p^{2} = m^{2} = 0$$

$$p^{\mu} = \sigma^{\mu}_{a\dot{a}} \lambda_{a} \tilde{\lambda}_{\dot{a}} \qquad \langle 12 \rangle = \epsilon_{ab} \lambda_{a}^{(1)} \lambda_{b}^{(2)}$$

New methods for amplitudes

- * Problem with Feynman diagrams: not gauge invariant Huge cancellations among diagrams $\epsilon^\mu \to \epsilon^\mu + \alpha p^\mu$
- New methods:
 - Work with on-shell gauge invariant quantities
 - Amplitude is as a single object, not a sum of Feynman diagrams



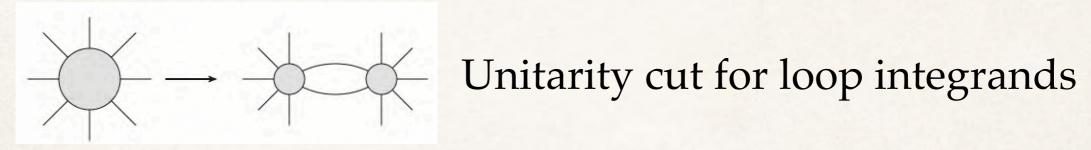
Revival of the S-matrix program from 1960s

Amplitude is a **unique** object satisfying certain constraints

Import difference: we work in the perturbation theory

Constraints

* Example of perturbative constraints:



- Final amplitudes: we do not know the full set of constraints
- * In planar N=4 SYM we have a remarkable control of the perturbation theory (which is the full result in this case)

Hexagon bootstrap

(Dixon et al)

- complete set of constraints
- explicit results up to 6-loops

Amplituhedron

(Arkani-Hamed, JT)

- for integrands and trees
- constraints come from geometry

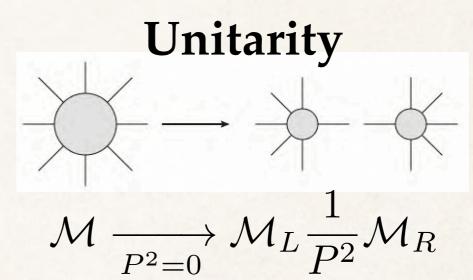
Tree-level amplitudes

Two important physical constraints

Locality

- Point-like interaction
- Only poles are

$$\frac{1}{P^2} \to \infty$$



Amplitude: unique gauge invariant function which is local and factorizes properly on all channels

On-shell constructible theories

For example: Yang-Mills, GR, Standard Model,....

Recursion relations

(Britto, Cachazo, Feng, Witten, 2005)

- * "Integrate" the relation $\mathcal{M} \xrightarrow{P^2=0} \mathcal{M}_L \frac{1}{P^2} \mathcal{M}_R$
- Write an amplitude using products of lower point amplitudes — we have to shift momenta

$$p_1 \rightarrow p_1 + zq$$

$$p_2 \rightarrow p_2 - zq$$

$$q^2 = (p_1 \cdot q) = (p_2 \cdot q) = 0$$

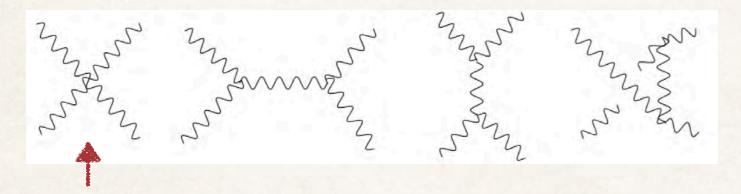
Cauchy formula for shifted amplitude

$$\int \frac{dz}{z} \mathcal{M}(z) = 0$$

$$\mathcal{M} = \sum_{P} \mathcal{M}_{L}(z_{P}) \frac{1}{P^{2}} \mathcal{M}_{R}(z_{P})$$

Problem with contact terms?

- Our statement: factorizations fix everything
- Four point amplitude in Yang-Mills theory



Gauge invariance!

Contact term: not detected by factorization

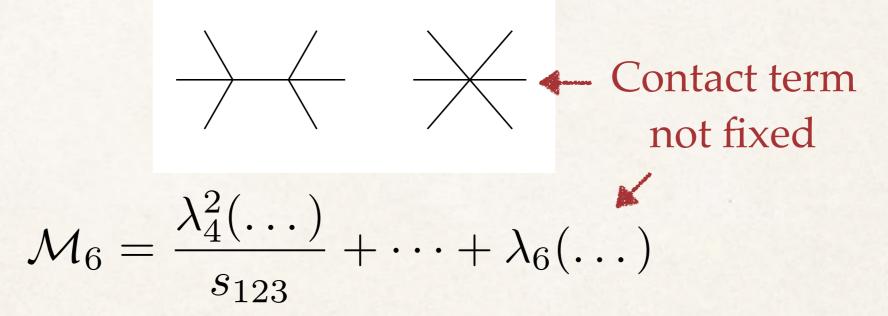
Lagrangian perspective

$$\mathcal{L} \sim (\partial A)^2 + gA^2 \partial A + \tilde{g}A^4 \xrightarrow{\tilde{g} \sim g^2} F^2$$

Scalar EFTs

* What if there is no gauge invariance like in scalar EFT

$$\mathcal{L} = (\partial \phi)^2 + \lambda_4 (\partial \phi)^4 + \lambda_6 (\partial \phi)^6 + \dots$$



Not fixed by the behavior on poles or gauge invariance: nothing unique about this amplitude

Non-linear sigma model

(Weinberg 1966)

* Famous example of an effective field theory SU(N) non-linear sigma model

Lagrangian: infinite tower of terms

Low energy QCD

$$\mathcal{L} \sim (\partial \phi)^2 + \frac{1}{F^2} \phi^2 (\partial \phi)^2 + c_6 \phi^4 (\partial \phi)^2 + \dots \longrightarrow \partial_{\mu} U \partial^{\mu} U^{\dagger}$$

non-linearly realized shift symmetry

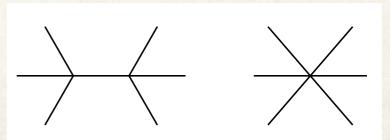
$$\phi \rightarrow \phi + a$$

$$U = \exp\left(\frac{i\phi}{F}\right)$$

fixes all coefficients

Amplitudes: vanishing soft-limit

$$\lim_{p \to 0} \mathcal{M}(p) = 0$$



Requires cancelation between diagrams

Back to our example

Write a generic Lagrangian with power counting

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \lambda_4 (\partial \phi)^4 + \lambda_6 (\partial \phi)^6 + \lambda_8 (\partial \phi)^8 + \dots$$

- Soft limit vanishing is trivial because the Lagrangian is derivatively coupled: does not fix coefficients
- Impose more: double vanishing in the soft limit

$$\lim_{p \to 0} \mathcal{M}(p) = \mathcal{O}(p^2)$$

Back to our example

Write a generic Lagrangian with power counting

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \frac{\lambda_4}{4} (\partial \phi)^4 + \frac{4\lambda_4^2}{4} (\partial \phi)^6 + \frac{20\lambda_4^3}{4} (\partial \phi)^8 + \dots$$

- Soft limit vanishing is trivial because the Lagrangian is derivatively coupled: does not fix coefficients
- Impose more: double vanishing in the soft limit

$$\lim_{p \to 0} \mathcal{M}(p) = \mathcal{O}(p^2)$$

What is this theory?

Result: DBI action

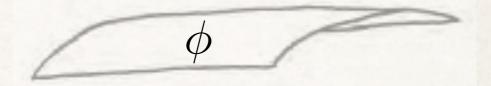
(Dirac, Born, Infeld 1934)

This is an expansion of

$$\mathcal{L} = \frac{1}{8\lambda_4} \left(1 - \sqrt{1 - 8\lambda_4 (\partial \phi)^2} \right)$$

DBI action

- Important role in string theory, inflationary models...
- Scalar field on the 4d-brane



Symmetry: reminiscence of 5d Lorentz symmetry

$$\phi \to \phi + a + (\theta \cdot x) - (\theta \cdot \phi)\partial\phi$$

Soft limit behavior

- Soft limit: important property at low energy
 - Yang-Mills, gravity: soft factors fixed by gauge invariance Scalars: vanishing

* Generalization:
$$\mathcal{M}(tp_i) \xrightarrow[t \to 0]{} \mathcal{O}(t^{\sigma})$$

Denote it as $\mathcal{M} = \mathcal{O}(p^{\sigma})$

Additional constraint: unique answer for amplitude

Standard approach:

symmetries of the theory uniquely fixed amplitudes

Our approach:

properties of amplitudes

special theories

Next case

- So far we reconstructed a known theory
- Let us go further with power-counting

$$\mathcal{L} = (\partial \phi)^2 + \lambda_4 (\partial^6 \phi^4) + \lambda_6 (\partial^8 \phi^6) + \dots$$

- Calculate amplitudes
- Impose $\mathcal{M} = \mathcal{O}(p^2)$

No higher terms are needed

$$\lambda_6 = \lambda_8 = \dots = 0$$

Two solutions identified with Galileons

$$\phi \to \phi + a + (b \cdot x)$$

Relevant for cosmological models

Special Galileon

(Cheung, Kampf, Novotny, JT, 2014)

(Cachazo, He, Yuan, 2014)

 Surprise: the behavior in the soft limit is even stronger for a particular choice of the coefficients

$$\mathcal{M}_n = \mathcal{O}(p^3)$$

- No symmetry explanation at that time
- One month later found
 A Hidden Symmetry of the Galileon

Kurt Hinterbichler, Austin Joyce (Submitted on 29 Jan 2015)

Effective Field Theories from Soft Limits

Clifford Cheung, Karol Kampf, Jiri Novotny, Jaroslav Trnka (Submitted on 12 Dec 2014)

Special Galileon

$$\phi \to s_{\mu\nu} x^{\mu} x^{\nu} + \frac{\lambda_4}{12} s^{\mu\nu} (\partial_{\mu} \phi) (\partial_{\nu} \phi)$$

Soft limit recursion

(Cheung, Kampf, Novotny, Shen, JT 2015)

From the Cauchy formula derive recursion relations

$$\mathcal{M} = -\sum_{z_P} F(z_P) \frac{\mathcal{M}(z_P) \mathcal{M}_R(z_P)}{P^2}$$

where F(z) is the modification incorporating soft limit

- New representation of amplitudes in these theories
- Future study: properties of individual terms
 - Searching for new mathematical structures

Exceptional theories

Similar uniqueness story with Yang-Mills, GR

$$\mathcal{M} = \sum_{\Gamma} \frac{N_{\Gamma}}{P_1^2 P_2^2 \dots P_m^2} \quad \text{impose } \mathcal{M} = 0 \text{ for } \epsilon_k^{\mu} \to \alpha p_k^{\mu}$$

(Arkani-Hamed, Rodina, JT, 2016)

soft limit -> gauge invariance kinematically similar, physics different

All these theories play also important role in other context: scattering equations, CHY formula

(Cachazo, He, Yuan, 2013)

The uniqueness there is related to the string theory

Final remarks

- Uniqueness crucial for the progress in planar N=4 SYM
- We studied tree-level amplitudes in larger class of theories, perhaps we can get more: different limits of amplitudes, more spins (Kampf, Novotny, JT, in progress)
- It can lead to new powerful tools and theoretical constructions like hexagon bootstrap, Amplituhedron

Thank you for your attention