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Coupling a QFT to a TQFT 

In many cases such a coupling affects the local structure, e.g.: 

• Free matter fields coupled to a Chern-Simons theory in 3d. 

• Orbifolds in 2d CFT 

 

Often the local structure is not affected, but there are still 
interesting consequences: spectrum of line and surface 
operators, local structure after compactification… 

 

In the paper, many examples in various dimensions both in the 
lattice and in the continuum.   

Here, we focus on one 4d example in the continuum. 

 



Line operators  
Some line operators are boundaries of surfaces.   

1. If the results depend on the geometry of the surface, this is 
not a line operator. 

2. In some cases the dependence on the surface is only through 
its topology. 

3. Genuine line operators are independent of the surface. 

 

 

Here at least one of the line operators needs a surface.  Hence, 
the apparent lack of locality. 

 

Genuine line operators of the form                                  with 
appropriate 𝑛 and 𝑚 are relatively local.   

  



Higher-form global symmetries 

Continuous 𝑞-form global symmetry – transformation with a 

closed 𝑞-form 𝜖(𝑞)  (𝑞 = 0 is an ordinary global symmetry with 
constant 𝜖).  

 

Discrete 𝑞-form global symmetry  𝜖(𝑞) ∈ 2𝜋ℤ . 

 

Example: 

An ordinary gauge theory with group 𝐺 is characterized by 
transition functions 𝑔𝑖𝑗 ∈ 𝐺 with 𝑔𝑖𝑗𝑔𝑗𝑘𝑔𝑘𝑖 = 1. 

If no matter fields transforming under ∁ , the center of 𝐺, 1-form 
discrete global symmetry 𝑔𝑖𝑗 → ℎ𝑖𝑗𝑔𝑖𝑗 with ℎ𝑖𝑗 

∈ ∁  and 
ℎ𝑖𝑗ℎ𝑗𝑘ℎ𝑘𝑖 = 1. 



Higher-form global symmetries 

1-form discrete global symmetry 𝑔𝑖𝑗 → ℎ𝑖𝑗𝑔𝑖𝑗  with  ℎ𝑖𝑗 ∈ ∁   

and  ℎ𝑖𝑗ℎ𝑗𝑘ℎ𝑘𝑖 = 1. 

 

When compactified on a circle, this 1-form global symmetry 
leads to an ordinary global symmetry ∁.   

It is common in thermal physics – the Polyakov loop is the order 
parameter for its breaking. 

 

We gauge ∁ by relaxing ℎ𝑖𝑗ℎ𝑗𝑘ℎ𝑘𝑖 = 1 (analog of gauging an 
ordinary global symmetry by letting 𝜖 depend on position).   

The resulting theory is an ordinary gauge theory of 𝐺/∁. 

 



A simple TFT – a 4d ℤ𝑛 gauge theory 
[Maldacena, Moore, NS; Banks, NS] 

 

1. Can describe as a ℤ𝑛 gauge theory.  

2. Can introduce a compact scalar 𝜙 ∼ 𝜙 + 2𝜋  and a 
𝑈(1) gauge symmetry  𝜙 →  𝜙 +  𝑛 𝜆 (with 𝜆 ∼ 𝜆 + 2 𝜋). 

3. Can also introduce a 𝑈(1) gauge field 𝐴 with Lagrangian  

 

 

       𝐻 is a 3-form Lagrange multiplier.  𝑈(1) → ℤ𝑛 manifest.  

4. Can dualize 𝜙  to find 

 

       with 𝐹 =  𝑑𝐴 and 𝐻 = 𝑑𝐵. 

 



4d ℤ𝑛 gauge theory 

 

5. Can dualize 𝐴 to find  

 

 

       𝐹 is a 2-form Lagrange multiplier. 

       Gauge symmetry: 

 

 

 

6. Can keep only       with its gauge symmetries 

7. Locally, can fix the gauge                and have only a ℤ𝑛 1-form 
gauge symmetry. 

 

 

 



Observables in a 4d ℤ𝑛 gauge theory 

 

Two kinds of Wilson operators 

 

 

 

 

Their correlation functions 

 

 

No additional (‘t Hooft) operators using 𝐴   or 𝜙 – they are trivial. 



An added term in a 4d ℤ𝑛 gauge theory 

 

In any of the formulations we can add the term [Gukov, Kapustin; 
Kapustin, Thorngren] 

 

 

With the modified gauge transformations: 

 

 

 

 

Consistency demands                       and 𝑝 ∼ 𝑝 + 2𝑛. 

 



From 𝑆𝑈(𝑛) to 𝑆𝑈(𝑛)/ℤ𝑛  
gauge theories 

𝐺 = 𝑆𝑈(𝑛) gauge theory  

• The Wilson line 𝑊 is a genuine line operator 

• The ‘t Hooft line 𝒯 needs a surface (the Dirac string).  Hence, 
the nonlocality in the commutation relations 

 

 

• If no matter fields charged under the ℤ𝑛 
center: 

– Only the topology of the surface is important. (Like 
disorder operator in the Ising model with vanishing 
magnetic field.) 

– Global 1-form discrete symmetry ∁= ℤ𝑛  



From 𝑆𝑈(𝑛) to 𝑆𝑈(𝑛)/ℤ𝑛  
gauge theories 

Next, we gauge the 1-form symmetry ∁= ℤ𝑛 to find an  𝑆𝑈(𝑛)/ℤ𝑛 g.t.  

Can use any of the formulations of a ∁= ℤ𝑛 gauge theory. 

Extend 𝑆𝑈(𝑛) to 𝑈(𝑛) by adding 𝐴  and impose the 1-form gauge 
symmetry  𝐴 → 𝐴  − 𝑛 Λ  to remove the added local dof. 

We can also add a new term in this theory – a discrete θ-term 

 

 

(Interpreted as an 𝑆𝑈(𝑛)/ℤ𝑛 theory, it is identified with the 
Pontryagin square 𝑤2

2 of the gauge bundle [Aharony, NS, Tachikawa].   
Here, a manifestly local expression for it.)  

 

 



𝑆𝑈(𝑛)/ℤ𝑛 gauge theory – operators  

Use e.g. 

 

 

 

 

                   

The surface operator 

 

measures the ‘t Hooft magnetic flux (𝑤2 of the bundle) through Σ.   

It is a manifestly local expression – integral of a local density. 

(More complicated expression for torsion cycles.) 



𝑆𝑈(𝑛)/ℤ𝑛 gauge theory 

Wilson  

 

‘t Hooft   

The dependence on Σ is topological.   

Genuine line operators (dyonic) 

 

The parameter 𝑝 is a discrete θ-parameter [Aharony, NS, Tachikawa].  

• It labels distinct 𝑆𝑈(𝑛)/ℤ𝑛 theories. 

• It can be understood either as a new term in the Lagrangian  
𝑖 𝑝

4𝜋𝑛
𝑑 𝐴 ∧ 𝑑 𝐴     (it is the Pontryagin square 𝑤2

2  of the gauge 

bundle), or in terms of the choice of genuine line operators.  

 



Similarities to 2d Orbifolds 

• In orbifolds we start with a system with a global symmetry. 

– Background gauge field – twisted boundary conditions 

– Gauging the symmetry by summing over these sectors 

– This removes operators and includes others 

– Discrete torsion: different coefficients for the sectors 

• In 4d gauge theories the global symmetry is a 1-form symmetry   

– Twisted sectors are bundles of a quotient of the  gauge group  

– Gauging the 1-form global symmetry – summing over sectors 

– This changes the line and surface operators 

– Discrete 𝜃-parameter – different coefficients for the sectors 



It is interesting to couple an ordinary QFT to a TQFT. 

• The resulting theory can have a different local structure.  
More generally, it has different line and surface operators. 

• When placed on manifolds other than ℝ𝐷 the effects are 
often more dramatic. 

• Such a coupling to a TQFT can describe the difference 
between a theory with gauge group 𝐺 and a theory with 
gauge group 𝐺/∁, e.g. 𝑆𝑈(𝑛) and 𝑆𝑈(𝑛)/ℤ𝑛. 

• It allows us to describe easily additional coupling constants 
(like discrete 𝜃-parameters) as integrals of local densities. 

• Such added TQFT are crucial in duality; e.g. in 2d Ising, 4d 
lattice gauge theories, 3d and 4d SUSY theories (not in this 
talk). 

Conclusions 



Thank you for your attention 


