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Two topics: (1) based on work with Francesco Sannino
and (2) with Clay Cordova and Thomas Dumitrescu



Spectacular
Collaborators

Clay Thomas
Cordova Dumitrescu

1506.03807: 6d conformal anomaly a from ’t Hooft anomalies. 6d
a-thm. for N=(1,0) susy theories.

1602.01217: Classify susy-preserving deformations for d>2 SCFTs.

+ to appear & work in progress
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“# d.of” RG flows

UV CFT (+relevant)

“chutes” course graining

IR CFT (+irrelevant)

“ladders’

E.g. Higgs mass E.g. dim 6 BSM ops

1=




“# d.o.f.” RG ﬂ OWS

UV CFT (+relevant)

l RG course graining The “deformations”

examples:
IR CFT (Firrelevant)

A A— Z g9;0;  (OKeven if SCFT is non-Lagrangian)
i
® Move on the moduli space of (susy) vacua.

® Gauge a (e.g. UV or IR free) global symmetry.

® Will here focus on RG flows that preserve supersymmetry.



RG flow constraints

® d=even:’t Hooft anomaly matching for all global symmetries
(including NGBs + WZW terms for spont. broken ones +
Green-Schwarz contributions for reducible ones). Weaker d=odd
analogs, e.g. parity anomaly matching in 3d.

® Reducing # of d.o.f. intuition. For d=2,4 (& d=6?) : a-theorem

ayv = QIR a>0 For any

unitary theory
d=even: <Tl§‘> ~ ol + Z c;l;

(d=odd: conjectured analogs, from sphere partition function /
entanglement entropy.)

® Additional power from supersymmetry.



UV asymptotic safety?

® Suppose theory has too much matter, so
not asymptotically free in UV.

® |R theory in free electric phase gz — 0.

® UV safe, interacting CFT, completion?
guv — g« With 3(g,) =07

l.e.in same theory as opposed
to some dual?

€.8- \¢"? no (lattice)



UV asymptotic safety

Surprise: examples found in non-susy QCD, D.F. Litim and F. Sannino ’14.

“Banks-Zaks” B(g) Litim-Sannino

IR

Theory: SU(N.) QCD with N¢ Dirac fermion flavors +Yukawa
coupling to N? gauge singlet scalars, with also quartic self-
interactions. N >(11/2)Nc so not asymp. free. Multiple couplings,
each IR free. Interacting CFT via cancellation of |-loop and

higher-loop beta fn contributions. Can be made perturbative,
taking Nrjust above (1 1/2)Nc.



Susy examples !

Warmup: recall example of N=1 susy gauge theory with 3 adjoint
matter chiral superfields, with superpotential W = ye”*Tr(®;®, ;)

N=4:IR
Individually IR free couplings

combine to give IR-attractive,
interacting SCFT.

UV starting point of these RG flows? Needs a UV
completion. Not UV safety.



“susy UV asyp. safety?”

K.l.and F. Sannino ’I5.

“No.” at least not nearby, in perturbation theory, in
broad classes of non-asymptotically free theories.

B(g for susy theories

.
mposing - |_ip *Gv=scird

Also |.Wells & S. Martin ‘00.
We were originally unaware

of this excellent, early paper.

® (s) CFT unitarity constraints.
O a-theorem: auv > aR. }

® apply a-maximization (KI,Wecht '03), if needed.



4d, N=1 SQFTs

1R v Energy-momentum tensor
Tu=Jy + -+ (00) T + ... supermultiplet, contains U(1)r current

Dajad = D, X, Energy-momentum conservation. X=chiral superfield,

Tﬁ + ’iaujf = X|g2  supermultiplet of anomalies (useful!).

1 3 - o
A(Qb) =14+ '2"‘/%(9) _ §R(Qz) Dimension of chiral fields

their running R-charges.

Exact beta functions ~ linear combinations of R-charges of fields:

NSV Z 3., 2
.ﬁg ~ —g " TrRG U(1);s ABJ anomaly.

W = hO ﬂh = gh(R(O) — 2) W's R-violation.



4d N=1 SCFTs

TH +1i0,Jp = X|e>  Curved background
X D ,/B\NSVZ(Rz')I/V2 + eW? — a= Euler
a = % (3TrR® — TrR) N Weyl*
1 Anselmi, Freedman,
c= ﬁ(Q’I‘rR‘3 — 5TrR) Grisaru, Johansen.

Nowvary R— R+¢eF, X — X +eD?Jp, find

DzJF = kFFFWIZ;w -+ kFW2 a— a >

The correct R-symmetry locally maximizes a(R). KiI, B. Wecht

Can use the power of 't Hooft anomaly matching.



SQCD examples

SU(N¢) SQCD with N¢ Dirac flavors, non AF: Nf > 3N

~ Ny — N, Superconf’l U(1)r determined b
R. = R(Q) = R(Q) = fo i anomaly(fr)eRe + symm '
Would violate
the a-theorem:
(Instead UV-  ar
completes to  Fuv
asymp. free
Seiberg dual.)

a(R) = 3TrR®> — TrR

> R




General N=1| cases

No N=1 susy theories with non-asymptotically free matter
content and W=0 can have a UV-safe SCFT. By a-maximization
all such cases would violate the a-theorem:

a(R) = 3TrR°* — TrR
Can satisfy a-thm only if some

fields have large R charge, far
from perturbative limit. Some
possible examples via W terms -
see Martin & Wells. Various
other constraints to check.

All satisfied? Do these exist!?
TBD.




Change gears

Discuss work with C. Cordova and T. Dumitrescu

Study, and largely classify, possible susy-preserving
deformations of SCFTs in various spacetime dims.

Especially consider 6d susy and SCFT constraints.
6 = the maximal spacetime dim for SCFTs. A
growing list of interacting, 6d SCFTs. Yield many
new QFTs in lower d, via compactification.



6d a-theorem?

For spontaneous conf’l symm breaking: dilaton has derivative
interactions to give ACL anom matching Schwimmer, Theisen;

Komargodski, Schwimmer
(390)4 ((990)6 (schematic)
3 T Aa—3
¥ ¥

1
6d case: Ldaiaton = 5(890)2 —b

Maxfield, Sethi; Elvang, Freedman, Hung, Kiermaier, Myers, Theisen.

Can show that b>0 (b=0 iff free) but b’s physical interpretation
was unclear; no conclusive restriction on sign of Ag.

Clue: observed that, for case of (2,0) on Coulomb branch,

Aa ~ b2 >0,

Cordova, Dumitrescu, Kl: this is a general req’t of N=(1,0) susy,and b is
related to an 't Hooft anomaly matching term.



e.g. Harvey

Longstanding hunch .

Moore ’98

Susy multiplet of anomalies: should be able to relate a-anomaly
to R-symmetry 't Hooft-type anomalies in 6d, as in 2d and 4d.

7a’ .
THY J]% Stress-tensor supermultiplet

Juv < AGR’M Sources = bkgrd SUGRA supermultiplet

THY TPO JHa Trv JP:a@ TPo

susy!?
i3

<
TR TGy Jroa A

4-point fn with too many
indices. Hard to get a,
and hard to compute.

(]C,a7 TCY

Easier to isolate anomaly term,
and enjoys anomaly matching



6d (1,0) “t Hooft anomalies

Igrigin — % (acg(R) + Bea(R)pr (T') + %@%(T) T 5]02(T))

c2(R) = Lt]c(lﬂ’SU@)R A Fsueey,) Background gauge fields and metric

87Ti ( ~ background SUGRA)
pi(T) = Q2 tr(R A R)

Computed for (2,0) SCFTs + many (1,0) SCFTs

Harvey, Minasian, Moore; KI; Ohmori, Shimizu, Tachikawa; Ohmori, Shimizu, Tachikawa,
Yonekura; Del Zotto, Heckman, Tomasiello, Vafa; Heckman, Morrison, Rudelius, Vafa.

E.g. for theory of N small E8 instantons: Ohmori,
Shimizu
7 N ’

N :
En: (a,B,7,6) = (N(N? +6N+3),—5(6N+ 5), §N’ —7) Tachikawa

(Leading N3 coeff. can be anticipated from Z, orbifold of An.i (2,0) case.)



(1,0) on tensor branch

197 = - (acd(R) + fea(R)ps (T) +4p3(T) + bps(T))

‘t Hooft anomaly matching requires

ATg = Igrigin _ Igensor branch x A X, Must be a perfect square,
match lg via X4 sourcing B:

ﬁGSWS — — B A X4 Kl ; Ohmori, Shimizu, Tachikawa, Yonekura

Xy = 167°(zc2(R) + yp1(T)) for some real coefficients x, y

Our classification of defs. gives: Licnsor = @°(O) O Laitaton + Lasws

1 .
Then b= 5 (y —x) Adapting a SUGRA analysis of Bergshoeff, Salam, Sezgin 86 (!).
o 16 6
Upshot: a”t e = 7(04 —B+7)+ ?5




Change gears («onn,

Classify susy-preserving deformations of SCFTs

@ “5L7 = QY20 D-term” e.g. Kaher potential in 4d N=1.

SCFT unitarity, bound grows with dimd:  A(§2) > %NQ + Apin(Olong)

1
Irrelevant. E.g.for 6d N=(1,0) such operators have A > 58 + 6 = 10.

1 Constrained b
‘ “5 Wy, — ntop O — y
L @ short AOL) o 'ttop + A(Osort) SCFT unitarity.
e.g. F-terms,W in 4d N=1.

Short reps classified, in terms of the superconf’l primary operator at the bottom
of the multiplet. Theory independent, just using SCFT rep constraints. Ve study
the Q descendants, looking for Lorentz scalar “top” ops. Some oddball susy-

preserving ops do exist, including in middle of multiplet(!) We had to be careful -
it’s risky to claim a complete classification (embarrassing if something is overlooked)!
Much more subtle and sporadic zoo than we originally expected (especially in 3d).




Some of our results:

® 6d (2,0):all 16 susy preserving deformations are irrel.
least irrelevant operator has dim = |2.

® 6d (1,0):all 8 susy preserving deformations are irrel.
least irrelevant operator has dim = |0. Also J. Luis, S. Lust.

® 5d:all susy preserving deformations are irrel., except
for real mass terms associated with global symmetries.

Also O.Aharony

® 4d, N=3:no relevant or marginal deformations. o
and M. Evtikhiev.

3d, N>3: all have universal, relevant, mass deformations
from stress-tensor; the only relevant deformations, and no
marginal. For N=4, also flavor current masses, no others.



CFTs, first w/o susy

S O d 2 Operators form representations
( 9 P P

descendants= total derivatives
P (O ’
PM T KN l “( R) such deformations are trivial.

Or primary K,(Ogr)=0

Unitarity: primary + all descendants must have + norm, e.g.
PMO)‘Q ~ (O||K,, P,]|O) >0 Zero norm, null states =

_ set to zero. Nulls = both
P, K,|~n.,D+M,, primary and descendant.




SCFT super-algebras

complete classification

d> 06 no SCFT's can exist

d=6  OSp(6,2|N) D SO(6,2) x Sp(N)r  (N,0)
d=5 F(4)>80(52) x Sp(1)r  8Qs N@s

d=4  Su(2,2IN #4) D S0(4,2) x SUN)gr x U(1)g
d=4  PSU(2.2IN =4) > SO(4,2) x SU(4)z V&

d=3 OSp(4|N) D S0O(3,2) x SON)r 2NQ@Qs
d=2  OSp(2IN7) x OSp(2|NR) NpLQs+ NgQs



SCFT operator reps

1 Q" (Or)
P, Kul
Q! S| )(Or) descendants
{Qa Q} = 2P,
{8,8} = 2K, O SUPer-primary S(Oz) =0

0L = ZgiOi primary, modulo descendants.
: 1Q,Q} ~ P, ~0 Grassmann algebra.

Level  0M(Or) (=0 Lyas < No



Typical, long multiplets

top

Q/\NQ (Or) Q(O;@p) ~ 0

modulo descendants

Ng doy conformal primary ops at
¢ = evel I, 2 Qd@R total

Qf S|

Or super-primary S(Or) =0

Can generate multiplet from bottom up, via Q,or from top down,
via S. Reflection symmetry. Unique op at bottom, so unique op at
the top. Operator at top = susy preserving deformation. No

other susy preserving operators in long multiplets. Easy cases.
D-terms. Unitarity bounds at bottom of give bounds at top.



Unitary bounds

All Q-descendants must have non-negative norm.
E.g. at Q-level one:

0 <[QIO)[" ~ (0715Q|0) ~ (OT|{S, Q}|0)
{S,Q} ~ D — (Mw/ + R)
—> A > c¢(Lorentz) + ¢(R — symmetry) + shift

Saturated iff there is a null state:a Q-descendant
that is also a superconformal primary:

Oy = Q(O/) and S(Oy) = 0
Set Oy =0 along with all its Q-descendants.



Long - null = short

Specific operator dimensions, in terms of Lorentz + R-
symmetry + shifts, to get null states. Set null states to
zero: a short multiplet. Simplest cases also have the
reflection symmetry, unique operator at bottom and
top = susy preserving
deformation:

O5"
Act on bottom op. with
all Q’s, setting the null
linear combinations to
zero. But can also act
with R-symmetry raising
and lowering. Some subtle cases. Or

Oy




Multiple top op. cases

(Unique bottom operator, so no reflection symmetry.)

E.e. 7, multiplet of 4d N=4, top ops= 7,., O,, O:

Conserved J;#°** of 5d N=1, top ops= J&°" O,

Many examples, especially with conserved currents; in such cases,
setting {(),Q} ~ P, ~ 0 requires care, since current cons. laws are

null, both primary and descendant. But also examples of multiple
top operators without conserved currents, e.g. in 4d N=2,

Obottom A2A2 [O O]R 1,r=0 Otop _ Q3Q2Ob0ttom

No c?onser\./ed currents and (o’ _ 3 Q2 Obottom
in this multiplet, yet 2 tops:



Mid-level susy tops(!)

null state
‘ r O fr
o1 S | ‘ o o

3d N >4 T,, multiplet: the stress-tensor is at top, at level 4.

Another top, at level 2, Lorentz scalar. Gives susy-preserving “universal
mass term’’ relevant deformations. First found in 3d N=8 (Kl '98, Bena &
Warner '04; Lin & Maldacena '05). Seems special to 3d. Indeed, these
examples give a deformed susy algebra with a “non-central extension”

with R-symm gens Rjj playing role of central term (=3d loophole to Haag-
Lopuszanski-Sohnius theorem).




Classify susy preserving
deformations of SCFTs

Many multiplets have mid-level Lorentz scalars, in all
dimensions. We do many cross checks that we're not

overlooking any exotic susy deformations (e.g. verify
that Q can map to an operator at the next level, check

Bose-Fermi degeneracy, recombination rules, etc).



E.s.

3d, N=8:

L=long, .
AB,C,..
=short.

Detailed tables

Give all susy-preserving deformations, relevant,
marginal, and all irrelevant deformations, for all N, d>2

Primary O Deformation §.¢ Commen t
(0,0,2,0) 9 (0,0,0,2)
Bl{ Ap =1 Q70 € A =9 Stress Tensor (T)
(0,0,0,2) 9 (0,0,2,0)
Bl{ Ap =1 Q0 e A~ 9 Stress Tensor (T)
(0,0, Ry + 4,0) g (0,0, R3,0) } =~
B Oe -
1{AO:2+%R3 Q A=6+ 1R, F-Term (7))
(0,0,0, R, +4) 8 (0,0,0, Ry) ~
B @) a
1{AO:2+%R4 @oc A=6+1iR, F-Term (T
(07 07 R3 + 27 R4 + 2) } 10 { <O7 07 R37 R4) }
B O e —
1{AO:2+%(R3+R4) v A:7+%(R3+R4)
B { <0> RZ + 27 RSa R4) } Q12O c { (07 R27 R3> R4> } o
"lAo =2+ Ry + L(Rs + Ry) A =8+ Ry+ L(Ry, + Ry)
B { (Ry +2, Ry, Ry, Ry) } 010 ¢ { (R, Ry, Rs, Ry) } B
"\Ap =2+ Ry + Ry + L(Rs + Ry) A=9+R,+Ry+ LRy + Ry)
(R17R27R37R4) } 16 { (R1>R27R37R4> }
L O e D-T
{Ao>1+R1+Rg+%<R3+R4> ¢ A>9+ Ry + Ry+ (R + Ry) o

universal
mass

all others
irrelev.

Table 16: Deformations of three-dimensional N' = 8 SCFTs. The R-charges of the deformation are denoted by the s0(8)p

Dynkin labels R17 RQ, Rg, R4 c ZZO



0¥

4d, N=3

(all irrelevant)

Primary O Deformation 0. Comments
{0 2 eGoc(H [ e
BB, {(0’ RZAZ b 4_5%2_ 8)} Q0 ¢ {<0’ iz;:_ffg 6)} F-Term ()
i {0220 2 ) oo (W15 2] :
B {0000 doe {7 Fterm (x)
B1Z{(07 OA,;“; 615)_, %TT< 0} 0°0 ¢ {(AO’E;J)_ 7%77: i 2} F-Term (%)
ZA RSt B L CE NG AR »
N dgoe S ) g
e ) L edoe L T ) | ®
S T B L P e I
(Ry, Ry ) (R, Ry )
Q6@60 < D-Term

(2R1 + RQ) — =T

2 1
An > 2+ max< 3 6 }
© {g(Rl +2Ry) + &

Table 25: Deformations of four-dimensional A” = 3 SCFTs. The su(3)g Dynkin labels R, Ry € Z~, and the u(1) charge r € R

denote the R-symmetry representation of the deformation.




d=5, 6 = simpler

No exotic susy deformations (not yet a 100% proof).

5d, N=1:  Q2C,[0,0]7=2 = [o,0i=0  Mass terms Via

flavor symms

(E.g. gauge / Q*cy[0, 0] =0, 07

: : 8+ 3 S R irrel. F-terms
kinetic terms)

Q°L1[0,0]™ = [0, O]A>8+§R irrel. D-terms

6d, N=(1,0):

Q*D1[0,0,01% = (0,0, 0] irrel. F-terms
A=10+2R

Q®L[0,0,0]" =[0,0,0]X<1940r irrel. D-terms



Conclude

® QFT is vast, still much to be found.

® susy QFTs and RG flows are rich, useful
testing grounds for exploring QFT. Strongly
constrained: unitarity, a-thm., etc. Can rule
out some things. Exact results for others.

® Thank you !



