Superconducting Detectors for Super Light Dark Matter

Yonit Hochberg

YH, Yue Zhao and Kathryn Zurek, PRL 116, 011301
YH, Matt Pyle, Yue Zhao and Kathryn Zurek, 1512.04533
and works in progress
Outline

• Why?
• How?
• Rates & Results
Why?
The Universe is Dark

No suitable candidate within the Standard Model (SM).

Requires at least one new stable/extremely long lived particle to exist today.
Dark Matter Properties

• DM has 5 times the mass density of baryons

• Massive \((m=?)\)

• Suppressed interactions with QED and QCD

• Doesn’t very strongly self-interact
Dark Matter and Early Universe

Is possible to link DM with early universe cosmology

If new particle has $2 \rightarrow 2$ interactions with the SM, there will be a relic density left over

Dark Matter Freeze Out

Boltzmann eq.:

$$\partial_t n + 3H n = -(n^2 - n^2_{eq}) \langle \sigma_{ann} v \rangle$$

density/measured

SM

DM

SM

DM

DM

SM

SM

DM

DM

DM

SM

DM

time

(← temperature)

YH @ Bay Area Seminar, March 2016
The WIMP Miracle

Correct thermal relic abundance:

\[\langle \sigma_{\text{ann}} v \rangle \equiv \frac{\alpha^2}{m_{\text{DM}}^2} \sim 3 \times 10^{-26} \text{ cm}^3/\text{sec} \]

\[m_{\text{DM}} \sim \alpha \times 30 \text{ TeV} \]

For weak coupling, weak scale emerges.

The dominant paradigm for \(~35\) years.
Searching for WIMPs

Direct production

Direct detection

Indirect detection

DM

SM

YH @ Bay Area Seminar, March 2016
WIMPs current status

Direct production

LHC searches for EW-ino DM

$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^0_1$

Direct detection

LUX null results

Indirect detection

HESS pressing the thermal Wino

[Cohen, Lisanti, Pierce, Slatyer JCAP 1310, 061 (2013); Fan and Reece, JHEP 1310, 124 (2013)]

YH @ Bay Area Seminar, March 2016
Been searching...
Dominant paradigm is being challenged.
Sociology

Dominant paradigm is being challenged.

- Big puzzles
- Great if a solution gives an option for dark matter candidate
- Big ideas: SUSY, extra dimensions...
- Dark matter exists
- Explain on its own
- Perhaps decoupled from other puzzles
- Think outside the WIMP box

theoretically & experimentally
Beyond the WIMP

mass [GeV]
Beyond the WIMP

(See Peter's talk?)

Go lighter!
keV-GeV

mass [GeV]
Theory: example #1

• **Weakly coupled $2 \rightarrow 2$:**

\[
\langle \sigma v \rangle \sim \frac{\alpha^2}{m_{DM}^2} \quad \alpha \ll 1
\]

\[
m_{DM} \sim \alpha \times 30 \text{ TeV}
\]

[Pospelov, Ritz, Voloshin 2007; Feng, Kumar 2008]
Theory: example #2

- Asymmetric dark matter:

\[m_{DM} \sim 5 \text{ GeV} \left(\frac{n_B - n_B}{n_{DM} - n_{DM}} \right) \]

[Kaplan, Luty, Zurek, 2009]
Theory: example #3

- **SIMPs:** \(n \rightarrow 2 \) self-annihilations

\[
m_{DM} \sim \alpha \left(\frac{T_{eq}}{M_{Pl}} \right)^{1/n}
\]

\[
m_{DM} \sim \alpha_{eff} \times 100 \text{ MeV}
\]

See also elastically decoupling dark matter (ELDERs)

[Carlson, Hall, Machacek, 1992; YH, Kuflik, Volansky, Wacker, 2014]

[Kuflik, Perelstein, Rey-Le Lorier, Tsai, 2015]
Theory: example #4

- **Forbidden channels:**

\[2m_{\text{DM}} < m_{\text{thing}_1} + m_{\text{thing}_2} \]

\[m_{\text{DM}} \sim \alpha \times (30 \text{ TeV}) \times e^{-x_F \Delta} \]

- freezeout temp'
- mass difference

[Griest, Seckel, 1991; D’Agnolo, Ruderman, 2015]
Beyond the WIMP

Theory:
Lots of activity in recent years
Beyond the WIMP

Experiment: Focus on direct detection of keV-GeV dark matter

mass [GeV]

10^{-30} 10^{-6} 10^{-3} 1 10^3 10^{50}
How?
Direct Detection

What's going on?
Direct Detection

• Nuclear recoils: \[E_{NR} = \frac{q^2}{2m_N} = \frac{(m_{DM}v)^2}{2m_N} \gtrsim E_{th} \sim \text{keV} \]

• For sub-GeV dark matter, scatter off electrons!

Kinetic energy available: \[E_D \sim \mu_r v^2 \]

\[m_{DM} \sim \text{MeV} \Rightarrow E_D \sim \text{eV} \quad \text{electron ionization, semiconductors} \]

[Essig, Mardon, Volansky, PRD 85, 076007 (2012); Graham, Kaplan, Rajendran, Walters, PDU 1, 32 (2012)]
Direct Detection

• Nuclear recoils:
\[E_{NR} = \frac{q^2}{2m_N} = \frac{(m_{DM}v)^2}{2m_N} \gtrsim E_{th} \sim \text{keV} \]

• For sub-GeV dark matter, scatter off electrons!

Kinetic energy available:
\[E_D \sim \mu_r v^2 \]

\[m_{DM} \sim \text{MeV} \implies E_D \sim \text{eV} \]

\[m_{DM} \sim \text{keV} \implies E_D \sim \text{meV} \]

electron ionization, semiconductors
Direct Detection

• Nuclear recoils: \[E_{NR} = \frac{q^2}{2m_N} = \frac{(m_{DM}v)^2}{2m_N} \gtrsim E_{th} \sim \text{keV} \]

• For sub-GeV dark matter, scatter off electrons!

Kinetic energy available: \[E_D \sim \mu_e v^2 \]

- \(m_{DM} \sim \text{MeV} \Rightarrow E_D \sim \text{eV} \) (electron ionization, semiconductors)
- \(m_{DM} \sim \text{keV} \Rightarrow E_D \sim \text{meV} \) (Superconductors!)

[YH, Zhao and Zurek, PRL 116, 011301
YH, Pyle, Zhao and Zurek 1512.04533]
Kinematics

Target at rest:

\[E_D \sim \frac{q^2}{2m_T} \]

- **Target = N:**

 \[q_{\text{max}} \sim 2\mu_r v_{\text{DM}} \sim 2m_{\text{DM}} v_{\text{DM}} \]

 Even for \[\sigma_E \sim \text{eV} \], only \[m_{\text{DM}} \sim \mathcal{O}(100\text{'s MeV}) \] detectable

- **Target = e:**

 \[m_{\text{DM}} \sim \text{keV} \quad \Rightarrow \quad E_D \sim 10^{-6} \text{ eV} \]

 \[m_{\text{DM}} \sim \text{MeV} \quad \Rightarrow \quad E_D \sim \text{eV} \quad \text{[semiconductors]} \]

Even \[\sigma_E \sim \text{meV} \] won’t allow sensitivity to keV DM
Kinematics

Target w/ velocity:

\[E_D \sim \left(\frac{\vec{q}^2}{2m_T} + \vec{q} \cdot \vec{v}_T \right) + \delta \]

- \(m_{DM} \gg m_T \): DM barely affected
 \[v_T \rightarrow v_T + 2v_{DM} \]
 \[E_D^{\text{max}} = \frac{1}{2}m_T [(v_T + 2v_{DM})^2 - v_T^2] \]

- \(m_{DM} \ll m_T \): Target can fully stop the DM
 \[E_D^{\text{max}} \sim \frac{1}{2}m_{DM}v_{DM}^2 \]
 \[\sigma_E \sim \text{meV} \quad \text{for} \quad m_{DM} \sim \text{keV} ! \]
Kinematics

Target w/ velocity:

\[E_D \sim \left(\frac{q^2}{2m_T} + \vec{q} \cdot \vec{v}_T \right) + \delta \]

Fermi-degenerate materials have velocity!

Focus on superconductor targets.
Superconductor Cheat Sheet

• Ground state of superconductor = Cooper pairs; Binding energy (gap) $\Delta \lesssim \text{meV}$

• The idea:
 DM scatters with Cooper pairs, deposits enough energy, breaks Cooper pairs, creating quasiparticles \rightarrow detect
Superconductor Cheat Sheet

• For energies exceeding the gap, scatter with free electrons in a Fermi-degenerate sea (“coherence factor” $\to 1$)

• Ram an electron, create quasiparticles which random walk until collected by e.g. a Transition Edge Sensor (TES)

Heat calorimeter

TESs used to detect microwaves and x-rays in astro applications (e.g. ACT, SPT, SuperCDMS)

YH @ Bay Area Seminar, March 2016
Superconductor Cheat Sheet

- Current status? Not there yet

<table>
<thead>
<tr>
<th>TES</th>
<th>T_c [mK]</th>
<th>Volume [μm × μm × nm]</th>
<th>Power Noise [W/√Hz]</th>
<th>σ_{E}^{now} [meV]</th>
<th>$\sigma_{E}^{\text{scale}}$ [meV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>W [3]</td>
<td>125</td>
<td>$25 \times 25 \times 35$</td>
<td>2.72×10^{-18}</td>
<td>120</td>
<td>1.1</td>
</tr>
<tr>
<td>Ti [5]</td>
<td>50</td>
<td>$6 \times 0.4 \times 56$</td>
<td>2.97×10^{-20}</td>
<td>47</td>
<td>22</td>
</tr>
<tr>
<td>MoCu [6]</td>
<td>110.6</td>
<td>$100 \times 100 \times 200$</td>
<td>4.2×10^{-19}</td>
<td>295.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

- Need to beat noise
- Energy resolution $\sigma_E \propto \sqrt{T^3 V}$

Reduce temperature and volume for O(meV) resolution
Detector Concept

Basic device idea:
Large exposure but high energy resolution = excitation concentration
(E.g. SuperCDMS)

Absorber \rightarrow
Collection fins \rightarrow
TES

Design by Matt Pyle
Detector Concept

- Quasiparticle lifetime of order a millisecond

- With velocity $10^{-2}c$, plenty of time to random walk and get absorbed before recombine

Design by Matt Pyle
Detector Concept

Comments:
• Low energy deposits: gapless absorber such as a metal
• But better: metal in superconducting phase so that the gap controls the thermal noise
• **Proof of concept**
Rates & Results
Rates

Scatter off electrons in Fermi-degenerate metal – Pauli blocking

\[E_F \sim 10 \text{ eV} \]

\[
\langle n_e \sigma v_{rel} \rangle = \int \frac{d^3p_3}{(2\pi)^3} \frac{\langle |M|^2 \rangle}{16E_1E_2E_3E_4} S(E_D, |q|)
\]

\[
S(E_D, |q|) = 2 \int \frac{d^3p_2}{(2\pi)^3} \frac{d^3p_4}{(2\pi)^3} (2\pi)^4 \delta^4(P_1 + P_2 - P_3 - P_4) \times f_2(E_2)(1 - f_4(E_4))
\]

Pauli blocking \(\sim \frac{E_D}{E_F} \sim 10^{-4} \)
Rates

\[\frac{dR}{d\log_{10}E_D} \text{ [yr}^{-1}\text{kg}^{-1}] \]

Recoil energy \(E_D \) [eV]

100 MeV DM

10 keV DM

light mediator

heavy mediator

YH @ Bay Area Seminar, March 2016
Rates

\[\sigma = \frac{16\pi\alpha_e\alpha_X}{(m^2_\phi - q^2)^2} \mu^2_{ex} \]

Low momentum dominates

Pauli blocking dominates

100 MeV DM

10 keV DM

Signal rates
Superconductors with 1 meV or 10 meV threshold

Reach

Massive mediator

\[\tilde{\sigma}_{DD} \text{ [cm}^2\text{]} \]

\[10^{-33} - 10^{-39} \]

\[10^{-6} - 10^{-1} \]

\[m_X [\text{GeV}] \]

\[\text{kg-year reach} \]

\[\tilde{\sigma}^{\text{heavy}}_{\text{DD}} = \frac{16\pi\alpha_e\alpha_X}{m_\phi^4} \mu_{eX}^2 \]
Superconductors with 1 meV or 10 meV threshold

\[\sigma_{DD} \propto 16\pi \alpha_e \alpha_X \frac{\mu_{eX}^2}{q_{\text{ref}}^4} \]

\[q_{\text{ref}} \equiv \mu_{eX} v_X \]

\[\alpha_e \alpha_X = 10^{-27} \]

Reach
Light mediator

kg-year reach
Summary

• Proposed new class of detectors using superconductors

• Sensitive to $O(\text{meV})$ energy deposits \rightarrow keV dark matter

• R&D to lower noise such that $O(\text{meV})$ energies are detectable. (Port over everything being done now for semiconductors.)

• Other absorbers, other calorimeters

• Populate the models space
Prospects

Superconductors!

electron-ionization, semiconductors (σ_{DM-e})

Xenon10...

WIMP program (σ_{DM-N})

$E_D > \text{meV}$

$E_D > \text{eV}$

keV MeV GeV
Prospects

Model zoo

- QCD axion
- sterile neutrino
- moduli w/ vector mediation

Hitoshi @ BCTP, Tahoe 2015

- gravitino
- SIMP
- asymmetric DM

WIMP
- non-thermal
- defects

mass [GeV]

Semi-conductors

Superconductors!

WIMP program

New ideas?

Experimental playground

YH @ Bay Area Seminar, March 2016
“Make dark matter great again.”
Thanks!